- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Singular Solution of a Quasilinear Convection Diffusion Degenerate Parabolic Equation with Absorption
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-20-349,
author = {Peixin Zhang },
title = {Singular Solution of a Quasilinear Convection Diffusion Degenerate Parabolic Equation with Absorption},
journal = {Journal of Partial Differential Equations},
year = {2007},
volume = {20},
number = {4},
pages = {349--364},
abstract = { In this paper the existence and nonexistence of non-trivial solution for the Cauchy problem of the form {ut = div(|∇u|^{p-2}∇u) - \frac{∂}{∂x_i}b_i(u) - u^q, \qquad(x, t) ∈ S_T = R^N × (0, T), u(x, 0) = 0, \qquad \qquad x ∈ R^N\ {0} are studied. We assume that |b^'_i(s)| ≤ Ms^{m-1}, and proved that if p > 2, 0 < q < p-1+ \frac{p}{N}, 0 ≤ m < p-1+ \frac{p}{N}, then the problem has a solution; if p > 2, q > p-1+ \frac{p}{N}, 0 ≤ m ≤ \frac{q(p+Np-N-1)}{p+Np-N} , then the problem has no solution; if p > 2,p-1 < q < p-1+ \frac{p}{N}, 0 ≤ m < q, then the problem has a very singular solution; if p > 2, q > p-1 + \frac{p}{N}, 0 < m < q - \frac{p}{2N}, then the problem has no very singular solution. We use P.D.E. methods such as regularization, Moser iteration and Imbedding Theorem.},
issn = {2079-732X},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jpde/5314.html}
}
TY - JOUR
T1 - Singular Solution of a Quasilinear Convection Diffusion Degenerate Parabolic Equation with Absorption
AU - Peixin Zhang
JO - Journal of Partial Differential Equations
VL - 4
SP - 349
EP - 364
PY - 2007
DA - 2007/11
SN - 20
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5314.html
KW - Convect diffusion equation
KW - Cauchy problem
KW - non-trivial solution
AB - In this paper the existence and nonexistence of non-trivial solution for the Cauchy problem of the form {ut = div(|∇u|^{p-2}∇u) - \frac{∂}{∂x_i}b_i(u) - u^q, \qquad(x, t) ∈ S_T = R^N × (0, T), u(x, 0) = 0, \qquad \qquad x ∈ R^N\ {0} are studied. We assume that |b^'_i(s)| ≤ Ms^{m-1}, and proved that if p > 2, 0 < q < p-1+ \frac{p}{N}, 0 ≤ m < p-1+ \frac{p}{N}, then the problem has a solution; if p > 2, q > p-1+ \frac{p}{N}, 0 ≤ m ≤ \frac{q(p+Np-N-1)}{p+Np-N} , then the problem has no solution; if p > 2,p-1 < q < p-1+ \frac{p}{N}, 0 ≤ m < q, then the problem has a very singular solution; if p > 2, q > p-1 + \frac{p}{N}, 0 < m < q - \frac{p}{2N}, then the problem has no very singular solution. We use P.D.E. methods such as regularization, Moser iteration and Imbedding Theorem.
Peixin Zhang . (2007). Singular Solution of a Quasilinear Convection Diffusion Degenerate Parabolic Equation with Absorption.
Journal of Partial Differential Equations. 20 (4).
349-364.
doi:
Copy to clipboard