Volume 20, Issue 4
Existence and Multiplicity Results for Elliptic Equations with Critical Sobolev Exponent and Hardy Term

Yanying Shang & Chunlei Tang

DOI:

J. Part. Diff. Eq., 20 (2007), pp. 289-298.

Published online: 2007-11

Preview Full PDF 5 415
Export citation
  • Abstract

This paper concerns the existence and multiplicity of solutions for some semilinear elliptic equations with critical Sobolev exponent, Hardy term and the sublinear nonlinearity at origin. By using Ekeland's variational principle, we conclude the existence of nontrivial solution for this problem, the Clark's critical point theorem is used to prove the existence of infinitely many solutions for this problem with odd nonlinearity.

  • Keywords

Critical Sobolev exponent Brezis-Lieb lemma genus Hardy term infinitely many solutions nontrivial solution

  • AMS Subject Headings

35B33 47J30 58E50.

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • References
  • Hide All
    View All

@Article{JPDE-20-289, author = {}, title = {Existence and Multiplicity Results for Elliptic Equations with Critical Sobolev Exponent and Hardy Term}, journal = {Journal of Partial Differential Equations}, year = {2007}, volume = {20}, number = {4}, pages = {289--298}, abstract = {

This paper concerns the existence and multiplicity of solutions for some semilinear elliptic equations with critical Sobolev exponent, Hardy term and the sublinear nonlinearity at origin. By using Ekeland's variational principle, we conclude the existence of nontrivial solution for this problem, the Clark's critical point theorem is used to prove the existence of infinitely many solutions for this problem with odd nonlinearity.

}, issn = {2079-732X}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jpde/5309.html} }
Copy to clipboard
The citation has been copied to your clipboard