- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Global Existence of Classical Solutions to the Cauchy Problem on a Semi-bounded Initial Axis for Inhomogeneous Quaslinear Hyperbolic Systems
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-20-273,
author = {Weiwei Han },
title = {Global Existence of Classical Solutions to the Cauchy Problem on a Semi-bounded Initial Axis for Inhomogeneous Quaslinear Hyperbolic Systems},
journal = {Journal of Partial Differential Equations},
year = {2007},
volume = {20},
number = {3},
pages = {273--288},
abstract = { In this paper, we consider the Cauchy problem with initial data given on a semi-bounded axis for inhomogeneous quasilinear hyperbolic systems. Under the assumption that the rightmost (resp. leftmost) eigenvalue is weakly linearly degenerate and the inhomogeneous term satisfies the corresponding matching condition, we obtain the global existence and uniqueness of C¹ solution with small and decaying initial data.},
issn = {2079-732X},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jpde/5308.html}
}
TY - JOUR
T1 - Global Existence of Classical Solutions to the Cauchy Problem on a Semi-bounded Initial Axis for Inhomogeneous Quaslinear Hyperbolic Systems
AU - Weiwei Han
JO - Journal of Partial Differential Equations
VL - 3
SP - 273
EP - 288
PY - 2007
DA - 2007/08
SN - 20
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5308.html
KW - Inhomogeneous quasilinear hyperbolic system
KW - Cauchy problem
KW - global classical solution
KW - weak linear degeneracy
KW - matching condition
AB - In this paper, we consider the Cauchy problem with initial data given on a semi-bounded axis for inhomogeneous quasilinear hyperbolic systems. Under the assumption that the rightmost (resp. leftmost) eigenvalue is weakly linearly degenerate and the inhomogeneous term satisfies the corresponding matching condition, we obtain the global existence and uniqueness of C¹ solution with small and decaying initial data.
Weiwei Han . (2007). Global Existence of Classical Solutions to the Cauchy Problem on a Semi-bounded Initial Axis for Inhomogeneous Quaslinear Hyperbolic Systems.
Journal of Partial Differential Equations. 20 (3).
273-288.
doi:
Copy to clipboard