- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Ricci Flow on Surfaces with Degenerate Initial Metrics
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-20-193,
author = {Xiuxiong Chen and Weiyue Ding },
title = {Ricci Flow on Surfaces with Degenerate Initial Metrics},
journal = {Journal of Partial Differential Equations},
year = {2007},
volume = {20},
number = {3},
pages = {193--202},
abstract = {
It is proved that given a conformal metric e^{u0}g_0, with e^{u0} ∈ L∞, on a 2-dim closed Riemannian manfold (M, g_0), there exists a unique smooth solution u(t) of the Ricci flow such that u(t) → u_0 in L² as t → 0.
}, issn = {2079-732X}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jpde/5302.html} }
TY - JOUR
T1 - Ricci Flow on Surfaces with Degenerate Initial Metrics
AU - Xiuxiong Chen & Weiyue Ding
JO - Journal of Partial Differential Equations
VL - 3
SP - 193
EP - 202
PY - 2007
DA - 2007/08
SN - 20
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5302.html
KW - Ricci flows
KW - degenerate metrics on surfaces
AB -
It is proved that given a conformal metric e^{u0}g_0, with e^{u0} ∈ L∞, on a 2-dim closed Riemannian manfold (M, g_0), there exists a unique smooth solution u(t) of the Ricci flow such that u(t) → u_0 in L² as t → 0.
Xiuxiong Chen and Weiyue Ding . (2007). Ricci Flow on Surfaces with Degenerate Initial Metrics.
Journal of Partial Differential Equations. 20 (3).
193-202.
doi:
Copy to clipboard