- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Cited by
- BibTex
- RIS
- TXT
In ecological dynamic systems, the competition between species is a very universal phenomenon, which can be described by the well-known Volterra-Lotka model in a diffusion form. Noticing that the living space usually changes in a seasonal manner and the population development of the species may also undergo time-delay impact, a developed form of this model is investigated in this article. The main approaches employed here are the upper-lower solution method and the energy-estimate technique. The results show that whether the species may sustain survival or not depends on the relations among the birth rate, the death rate, the competition rate, the diffusivity and the time delay. For the survival case, the population evolutions of the two species may appear asymptotic periodicity with distinct upper bound and this bound depends heavily on the time delay. These results can be also checked by the intuitionistic numerical simulations.
}, issn = {2079-732X}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jpde/5283.html} }In ecological dynamic systems, the competition between species is a very universal phenomenon, which can be described by the well-known Volterra-Lotka model in a diffusion form. Noticing that the living space usually changes in a seasonal manner and the population development of the species may also undergo time-delay impact, a developed form of this model is investigated in this article. The main approaches employed here are the upper-lower solution method and the energy-estimate technique. The results show that whether the species may sustain survival or not depends on the relations among the birth rate, the death rate, the competition rate, the diffusivity and the time delay. For the survival case, the population evolutions of the two species may appear asymptotic periodicity with distinct upper bound and this bound depends heavily on the time delay. These results can be also checked by the intuitionistic numerical simulations.