- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
A Note to the Cauchy Problem for the Degenerate Parabolic Equations with Strongly Nonlinear Sources
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-22-199,
author = {},
title = {A Note to the Cauchy Problem for the Degenerate Parabolic Equations with Strongly Nonlinear Sources},
journal = {Journal of Partial Differential Equations},
year = {2009},
volume = {22},
number = {3},
pages = {199--204},
abstract = {
In this note we study the nonexistence of nontrivial global solutions on S=R^N×(0,∞) for the following inequalities: |u|_t≥Δ(|u|^{m-1}u)+|u|^q, and |u|_t≥div(|∇u|^{p-2}∇|u|)+|u|^q. When m, p, q satisfy some given conditions, the nonexistence of nontrivial global solution is proved, without taking their traces on the hyperplans t=0 into account.
}, issn = {2079-732X}, doi = {https://doi.org/10.4208/jpde.v22.n3.1}, url = {http://global-sci.org/intro/article_detail/jpde/5253.html} }
TY - JOUR
T1 - A Note to the Cauchy Problem for the Degenerate Parabolic Equations with Strongly Nonlinear Sources
JO - Journal of Partial Differential Equations
VL - 3
SP - 199
EP - 204
PY - 2009
DA - 2009/08
SN - 22
DO - http://doi.org/10.4208/jpde.v22.n3.1
UR - https://global-sci.org/intro/article_detail/jpde/5253.html
KW - Nonlinear sources
KW - global solutions
KW - nonexistence
AB -
In this note we study the nonexistence of nontrivial global solutions on S=R^N×(0,∞) for the following inequalities: |u|_t≥Δ(|u|^{m-1}u)+|u|^q, and |u|_t≥div(|∇u|^{p-2}∇|u|)+|u|^q. When m, p, q satisfy some given conditions, the nonexistence of nontrivial global solution is proved, without taking their traces on the hyperplans t=0 into account.
Tingting Zheng & Junning Zhao . (2019). A Note to the Cauchy Problem for the Degenerate Parabolic Equations with Strongly Nonlinear Sources.
Journal of Partial Differential Equations. 22 (3).
199-204.
doi:10.4208/jpde.v22.n3.1
Copy to clipboard