- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Cited by
- BibTex
- RIS
- TXT
We establish the existence of positive bound state solutions for the singular quasilinear Schrödinger equation i\frac{∂ψ}{∂t}=-div(ρ(|∇ψ|^2)∇ψ)+ω(|ψ|^2)ψ-λρ(|ψ|^2)ψ, x∈Ω, t > 0, where ω(τ^2)τ→+∞ as τ → 0 and,λ > 0 is a parameter and Ω is a ball in R^N. This problem is studied in connection with the following quasilinear eigenvalue problem with Dirichlet boundary condition -div(ρ(|∇Ψ|^2)∇Ψ)=λ_1ρ(|Ψ|^2)Ψ, x∈Ω. Indeed, we establish the existence of solutions for the above Schrödinger equation when λ belongs to a certain neighborhood of the first eigenvalue λ_1 of this eigenvalue problem. Themain feature of this paper is that the nonlinearity ω(|ψ|^2)ψ is unbounded around the origin and also the presence of the second order nonlinear term. Our analysis shows the importance of the role played by the parameter λ combined with the nonlinear nonhomogeneous term div(ρ(|∇ψ|^2)∇ψ) which leads us to treat this problem in an appropriateOrlicz space. The proofs are based on various techniques related to variational methods and implicit function theorem.
}, issn = {2079-732X}, doi = {https://doi.org/10.4208/jpde.v23.n3.2}, url = {http://global-sci.org/intro/article_detail/jpde/5231.html} }We establish the existence of positive bound state solutions for the singular quasilinear Schrödinger equation i\frac{∂ψ}{∂t}=-div(ρ(|∇ψ|^2)∇ψ)+ω(|ψ|^2)ψ-λρ(|ψ|^2)ψ, x∈Ω, t > 0, where ω(τ^2)τ→+∞ as τ → 0 and,λ > 0 is a parameter and Ω is a ball in R^N. This problem is studied in connection with the following quasilinear eigenvalue problem with Dirichlet boundary condition -div(ρ(|∇Ψ|^2)∇Ψ)=λ_1ρ(|Ψ|^2)Ψ, x∈Ω. Indeed, we establish the existence of solutions for the above Schrödinger equation when λ belongs to a certain neighborhood of the first eigenvalue λ_1 of this eigenvalue problem. Themain feature of this paper is that the nonlinearity ω(|ψ|^2)ψ is unbounded around the origin and also the presence of the second order nonlinear term. Our analysis shows the importance of the role played by the parameter λ combined with the nonlinear nonhomogeneous term div(ρ(|∇ψ|^2)∇ψ) which leads us to treat this problem in an appropriateOrlicz space. The proofs are based on various techniques related to variational methods and implicit function theorem.