- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Cited by
- BibTex
- RIS
- TXT
We establish the existence, uniqueness and the blow-up rate of the large positive solution of the quasi-linear elliptic problem $$-\triangle_{p}u=\lambda (x)u^{\theta -1}-b(x)h(u), in \Omega, $$ with boundary condition $u=+\infty $ on $\partial \Omega $, where $\Omega \subset R^N$ $(N\geq 2)$ is a smooth bounded domain, $1<p<\infty $, $\lambda (.)$ and $b(.)$ are positive weight functions and $h(u)\sim u^{q-1} $ as $u\rightarrow \infty $. Our results extend the previous work [Z. Xie, J. Diff. Equ., 247 (2009), 344-363] from case $p=2$, $\lambda $ is a constant and $\theta =2$ to case $1<p<\infty $, $\lambda $ is a function and $1<\theta
}, issn = {2079-732X}, doi = {https://doi.org/10.4208/jpde.v26.n3.3}, url = {http://global-sci.org/intro/article_detail/jpde/5163.html} }We establish the existence, uniqueness and the blow-up rate of the large positive solution of the quasi-linear elliptic problem $$-\triangle_{p}u=\lambda (x)u^{\theta -1}-b(x)h(u), in \Omega, $$ with boundary condition $u=+\infty $ on $\partial \Omega $, where $\Omega \subset R^N$ $(N\geq 2)$ is a smooth bounded domain, $1<p<\infty $, $\lambda (.)$ and $b(.)$ are positive weight functions and $h(u)\sim u^{q-1} $ as $u\rightarrow \infty $. Our results extend the previous work [Z. Xie, J. Diff. Equ., 247 (2009), 344-363] from case $p=2$, $\lambda $ is a constant and $\theta =2$ to case $1<p<\infty $, $\lambda $ is a function and $1<\theta