- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Cited by
- BibTex
- RIS
- TXT
This paper is devoted to studying the following initial-boundary value problemfor one-dimensional semilinearwave equationswith variable coefficients andwith subcritical exponent: $u_{tt}-∂_x(a(x)∂_xu)=|u|^p, x > 0, t > 0, n=1,$ where $u=u(x,t)$ is a real-valued scalar unknown function in $[0,+∞)×[0,+∞)$, here a(x) is a smooth real-valued function of the variable $x∈(0,+∞)$. The exponents p satisfies $1 < p < +∞$ in (0.1). It is well-known that the number $p_c(1)=+∞$ is the critical exponent of the semilinear wave equation (0.1) in one space dimension (see for e.g., [1]). We will establish a blowup result for the above initial-boundary value problem, it is proved that there can be no global solutions no matter how small the initial data are, and also we give the lifespan estimate of solutions for above problem.
}, issn = {2079-732X}, doi = {https://doi.org/10.4208/jpde.v26.n2.4}, url = {http://global-sci.org/intro/article_detail/jpde/5158.html} }This paper is devoted to studying the following initial-boundary value problemfor one-dimensional semilinearwave equationswith variable coefficients andwith subcritical exponent: $u_{tt}-∂_x(a(x)∂_xu)=|u|^p, x > 0, t > 0, n=1,$ where $u=u(x,t)$ is a real-valued scalar unknown function in $[0,+∞)×[0,+∞)$, here a(x) is a smooth real-valued function of the variable $x∈(0,+∞)$. The exponents p satisfies $1 < p < +∞$ in (0.1). It is well-known that the number $p_c(1)=+∞$ is the critical exponent of the semilinear wave equation (0.1) in one space dimension (see for e.g., [1]). We will establish a blowup result for the above initial-boundary value problem, it is proved that there can be no global solutions no matter how small the initial data are, and also we give the lifespan estimate of solutions for above problem.