- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Cited by
- BibTex
- RIS
- TXT
Let $Ω⊂\mathbb{R}^N$, $(N ≥ 2)$ be a bounded smooth domain, p is Hölder continuous on $\overline{\Omega}$, $$1 ‹ p^–:=inf_Ωp(x)≤p^+=sup_Ωp(x)›∞,$$ and $f : \overline{\Omega}×\mathbb{R}→\mathbb{R}$ be a C¹ function with $f (x,s) ≥ 0, ∀(x,s)∈Ω×\mathbb{R}^+$ and $sup_x∈Ω f (x,s)≤ C(1+s)^{q(x)}$, $∀s∈\mathbb{R}^+, ∀x∈Ω$ for some $0‹q(x)∈C(\overline{\Omega})$ satisfying $1›p(x)›q(x)≥p^∗(x)-1, ∀x∈\overline{\Omega}$ and $1‹p^-≤p^+‹q^-≤q^+$. As usual, $p^∗(x)= \frac{Np(x)}{N-p(x)}$ if $p(x)‹N and p^∗(x)=∞$ if $p(x)≥N$. Consider the functional $I :W^{1,p(x)}_0 (Ω)→\mathbb{R}$ defined as $$I(u)^{def} = \int_Ω\frac{1}{p(x)}|∇u|^{p(x)}dx-\int_ΩF(x,u^+)dx, ∀u∈W^{1,p(x)}_0 (Ω),$$ where $F(x,u)=\int^s_0 f (x,s)ds$. Theorem1.1 proves that if $u_0∈C¹(\overline{\Omega})$ is a local minimum of I in the $C¹(\overline{\Omega})∩C_0(\overline{\Omega})$ topology, then it is also a local minimum in $W^{1,p(x)}_0 (Ω)$ topology. This result is useful for proving multiple solutions to the associated Euler-lagrange equation (P) defined below.
}, issn = {2079-732X}, doi = {https://doi.org/10.4208/jpde.v27.n2.2}, url = {http://global-sci.org/intro/article_detail/jpde/5129.html} }Let $Ω⊂\mathbb{R}^N$, $(N ≥ 2)$ be a bounded smooth domain, p is Hölder continuous on $\overline{\Omega}$, $$1 ‹ p^–:=inf_Ωp(x)≤p^+=sup_Ωp(x)›∞,$$ and $f : \overline{\Omega}×\mathbb{R}→\mathbb{R}$ be a C¹ function with $f (x,s) ≥ 0, ∀(x,s)∈Ω×\mathbb{R}^+$ and $sup_x∈Ω f (x,s)≤ C(1+s)^{q(x)}$, $∀s∈\mathbb{R}^+, ∀x∈Ω$ for some $0‹q(x)∈C(\overline{\Omega})$ satisfying $1›p(x)›q(x)≥p^∗(x)-1, ∀x∈\overline{\Omega}$ and $1‹p^-≤p^+‹q^-≤q^+$. As usual, $p^∗(x)= \frac{Np(x)}{N-p(x)}$ if $p(x)‹N and p^∗(x)=∞$ if $p(x)≥N$. Consider the functional $I :W^{1,p(x)}_0 (Ω)→\mathbb{R}$ defined as $$I(u)^{def} = \int_Ω\frac{1}{p(x)}|∇u|^{p(x)}dx-\int_ΩF(x,u^+)dx, ∀u∈W^{1,p(x)}_0 (Ω),$$ where $F(x,u)=\int^s_0 f (x,s)ds$. Theorem1.1 proves that if $u_0∈C¹(\overline{\Omega})$ is a local minimum of I in the $C¹(\overline{\Omega})∩C_0(\overline{\Omega})$ topology, then it is also a local minimum in $W^{1,p(x)}_0 (Ω)$ topology. This result is useful for proving multiple solutions to the associated Euler-lagrange equation (P) defined below.