- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Wave Kernels with Bi-Inverse Square Potentials on Euclidean Plane
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-28-9,
author = {Moustapha , Mohamed Vall Ould},
title = {Wave Kernels with Bi-Inverse Square Potentials on Euclidean Plane},
journal = {Journal of Partial Differential Equations},
year = {2015},
volume = {28},
number = {1},
pages = {9--22},
abstract = { The Cauchy problemfor the wave equation with bi-inverse square potential on Euclidean plane is solved in terms of the two variables Appell F2 hypergeometric functions. Our principal tools are the Hankel transforms and the special functions of mathematical physics.},
issn = {2079-732X},
doi = {https://doi.org/10.4208/jpde.v28.n1.2},
url = {http://global-sci.org/intro/article_detail/jpde/5098.html}
}
TY - JOUR
T1 - Wave Kernels with Bi-Inverse Square Potentials on Euclidean Plane
AU - Moustapha , Mohamed Vall Ould
JO - Journal of Partial Differential Equations
VL - 1
SP - 9
EP - 22
PY - 2015
DA - 2015/03
SN - 28
DO - http://doi.org/10.4208/jpde.v28.n1.2
UR - https://global-sci.org/intro/article_detail/jpde/5098.html
KW - Inverse square potential
KW - wave equation
KW - Hankel transform
KW - Bessl functions
KW - F_2-Appell hypergeometric function
AB - The Cauchy problemfor the wave equation with bi-inverse square potential on Euclidean plane is solved in terms of the two variables Appell F2 hypergeometric functions. Our principal tools are the Hankel transforms and the special functions of mathematical physics.
Moustapha , Mohamed Vall Ould. (2015). Wave Kernels with Bi-Inverse Square Potentials on Euclidean Plane.
Journal of Partial Differential Equations. 28 (1).
9-22.
doi:10.4208/jpde.v28.n1.2
Copy to clipboard