- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Remarks on Exponential Stability of Solutions for the Compressible p-th Power Newtonian Fluid with Large Initial Data
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-29-286,
author = {Zhang , JianlinQin , Yuming and Cao , Jie},
title = {Remarks on Exponential Stability of Solutions for the Compressible p-th Power Newtonian Fluid with Large Initial Data},
journal = {Journal of Partial Differential Equations},
year = {2016},
volume = {29},
number = {4},
pages = {286--301},
abstract = { In this paper, we establish the exponential stability of the global spherically and cylindrically symmetric solutions in H^i (i=1,2,4) for the p-th power Newtonian fluid in multi-dimension with large initial data. The key point is that the smallness of initial data is not needed if the initial data are cylindrically symmetric.},
issn = {2079-732X},
doi = {https://doi.org/10.4208/jpde.v29.n4.3},
url = {http://global-sci.org/intro/article_detail/jpde/5094.html}
}
TY - JOUR
T1 - Remarks on Exponential Stability of Solutions for the Compressible p-th Power Newtonian Fluid with Large Initial Data
AU - Zhang , Jianlin
AU - Qin , Yuming
AU - Cao , Jie
JO - Journal of Partial Differential Equations
VL - 4
SP - 286
EP - 301
PY - 2016
DA - 2016/12
SN - 29
DO - http://doi.org/10.4208/jpde.v29.n4.3
UR - https://global-sci.org/intro/article_detail/jpde/5094.html
KW - Newtonian fluid
KW - global existence
KW - asymptotic behavior
KW - exponential stability
AB - In this paper, we establish the exponential stability of the global spherically and cylindrically symmetric solutions in H^i (i=1,2,4) for the p-th power Newtonian fluid in multi-dimension with large initial data. The key point is that the smallness of initial data is not needed if the initial data are cylindrically symmetric.
Zhang , JianlinQin , Yuming and Cao , Jie. (2016). Remarks on Exponential Stability of Solutions for the Compressible p-th Power Newtonian Fluid with Large Initial Data.
Journal of Partial Differential Equations. 29 (4).
286-301.
doi:10.4208/jpde.v29.n4.3
Copy to clipboard