- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Asymptotic Behavior of the Solution to a 3-D Simplified Energy-Transport Model for Semiconductors
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-29-71,
author = {Liu , ChundiLi , Yong and Wang , Shu},
title = {Asymptotic Behavior of the Solution to a 3-D Simplified Energy-Transport Model for Semiconductors},
journal = {Journal of Partial Differential Equations},
year = {2016},
volume = {29},
number = {1},
pages = {71--88},
abstract = { The well-posedness of smooth solution to a 3-Dsimplified Energy-Transport model is discussed in this paper. We prove the local existence, uniqueness, and asymptotic behavior of solution to the equations with hybrid cross-diffusion. The smooth solution convergences to a stationary solution with an exponential rate as time tends to infinity when the initial date is a small perturbation of the stationary solution.},
issn = {2079-732X},
doi = {https://doi.org/10.4208/jpde.v29.n1.7},
url = {http://global-sci.org/intro/article_detail/jpde/5080.html}
}
TY - JOUR
T1 - Asymptotic Behavior of the Solution to a 3-D Simplified Energy-Transport Model for Semiconductors
AU - Liu , Chundi
AU - Li , Yong
AU - Wang , Shu
JO - Journal of Partial Differential Equations
VL - 1
SP - 71
EP - 88
PY - 2016
DA - 2016/03
SN - 29
DO - http://doi.org/10.4208/jpde.v29.n1.7
UR - https://global-sci.org/intro/article_detail/jpde/5080.html
KW - Energy-Transport model
KW - Gagliardo-Nirenberg inequality
KW - asymptotic behavior
AB - The well-posedness of smooth solution to a 3-Dsimplified Energy-Transport model is discussed in this paper. We prove the local existence, uniqueness, and asymptotic behavior of solution to the equations with hybrid cross-diffusion. The smooth solution convergences to a stationary solution with an exponential rate as time tends to infinity when the initial date is a small perturbation of the stationary solution.
Liu , ChundiLi , Yong and Wang , Shu. (2016). Asymptotic Behavior of the Solution to a 3-D Simplified Energy-Transport Model for Semiconductors.
Journal of Partial Differential Equations. 29 (1).
71-88.
doi:10.4208/jpde.v29.n1.7
Copy to clipboard