- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Asymptotic Behavior for a Viscoelastic Wave Equation with a Time-varying Delay Term
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-29-22,
author = {Wu , Shun Tang},
title = {Asymptotic Behavior for a Viscoelastic Wave Equation with a Time-varying Delay Term},
journal = {Journal of Partial Differential Equations},
year = {2016},
volume = {29},
number = {1},
pages = {22--35},
abstract = { The following viscoelastic wave equation with a time-varying delay term in internal feedback $|u_t|^ρu_{tt}-Δu-Δu_{tt}+∫^t_0g(t-s)Δu(s)ds+μ_1u_t(x,t)+μ_2u_t(x,t-τ(t))=0$, is considered in a bounded domain. Under appropriate conditions on μ_1, μ_2 and on the kernel g, we establish the general decay result for the energy by suitable Lyapunov functionals.},
issn = {2079-732X},
doi = {https://doi.org/10.4208/jpde.v29.n1.3},
url = {http://global-sci.org/intro/article_detail/jpde/5076.html}
}
TY - JOUR
T1 - Asymptotic Behavior for a Viscoelastic Wave Equation with a Time-varying Delay Term
AU - Wu , Shun Tang
JO - Journal of Partial Differential Equations
VL - 1
SP - 22
EP - 35
PY - 2016
DA - 2016/03
SN - 29
DO - http://doi.org/10.4208/jpde.v29.n1.3
UR - https://global-sci.org/intro/article_detail/jpde/5076.html
KW - Global existence
KW - asymptotic behavior
KW - general decay
KW - time-varying delay
AB - The following viscoelastic wave equation with a time-varying delay term in internal feedback $|u_t|^ρu_{tt}-Δu-Δu_{tt}+∫^t_0g(t-s)Δu(s)ds+μ_1u_t(x,t)+μ_2u_t(x,t-τ(t))=0$, is considered in a bounded domain. Under appropriate conditions on μ_1, μ_2 and on the kernel g, we establish the general decay result for the energy by suitable Lyapunov functionals.
Wu , Shun Tang. (2016). Asymptotic Behavior for a Viscoelastic Wave Equation with a Time-varying Delay Term.
Journal of Partial Differential Equations. 29 (1).
22-35.
doi:10.4208/jpde.v29.n1.3
Copy to clipboard