- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Global Well-Posedness and Incompressible Limit of the Hall-Magnetohydrodynamic System in a Bounded Domain
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-37-482,
author = {Mu , YanminWang , Wenkang and Zhang , Jing},
title = {Global Well-Posedness and Incompressible Limit of the Hall-Magnetohydrodynamic System in a Bounded Domain},
journal = {Journal of Partial Differential Equations},
year = {2024},
volume = {37},
number = {4},
pages = {482--490},
abstract = {
In this paper we firstly prove the global well-posedness for the compressible Hall-magnetohydrodynamic system in a bounded domain when the initial data is small. On this basis, we continue to study the convergence of the corresponding equations with the well-prepared initial data as the Mach number tends to zero.
}, issn = {2079-732X}, doi = {https://doi.org/10.4208/jpde.v37.n4.7}, url = {http://global-sci.org/intro/article_detail/jpde/23692.html} }
TY - JOUR
T1 - Global Well-Posedness and Incompressible Limit of the Hall-Magnetohydrodynamic System in a Bounded Domain
AU - Mu , Yanmin
AU - Wang , Wenkang
AU - Zhang , Jing
JO - Journal of Partial Differential Equations
VL - 4
SP - 482
EP - 490
PY - 2024
DA - 2024/12
SN - 37
DO - http://doi.org/10.4208/jpde.v37.n4.7
UR - https://global-sci.org/intro/article_detail/jpde/23692.html
KW - Compressible Hall-magnetohydrodynamic system, global well-posedness, incompressible limit.
AB -
In this paper we firstly prove the global well-posedness for the compressible Hall-magnetohydrodynamic system in a bounded domain when the initial data is small. On this basis, we continue to study the convergence of the corresponding equations with the well-prepared initial data as the Mach number tends to zero.
Mu , YanminWang , Wenkang and Zhang , Jing. (2024). Global Well-Posedness and Incompressible Limit of the Hall-Magnetohydrodynamic System in a Bounded Domain.
Journal of Partial Differential Equations. 37 (4).
482-490.
doi:10.4208/jpde.v37.n4.7
Copy to clipboard