- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Cited by
- BibTex
- RIS
- TXT
We consider the uniform attractors of a 3D non-autonomous Brinkman– Forchheimer equation with a singularly oscillating force $$\frac{\partial u}{\partial t}-\gamma\Delta u+au+b|u|u+c|u|^2u+\nabla p=f_0(x,t)+\varepsilon^{-\rho}f_1\Bigg(x,\frac{t}{\varepsilon}\Bigg),$$ for $ρ∈[0,1)$ and $\varepsilon>0,$ and the averaged equation (corresponding to the limiting case $\varepsilon=0$) $$\frac{\partial u}{\partial t}-\gamma\Delta u+au+b|u|u+c|u|^2u+\nabla p=f_0(x,t).$$Given a certain translational compactness assumption for the external forces, we obtain the uniform boundedness of the uniform attractor $\mathcal{A}^{\varepsilon}$ of the first system in $(H^1_0(Ω))^3,$ and prove that when $\varepsilon$ tends to 0, the uniform attractor of the first system $\mathcal{A}^{\varepsilon}$ converges to the attractor $\mathcal{A}^0$ of the second system.
}, issn = {2079-732X}, doi = {https://doi.org/10.4208/jpde.v37.n4.1}, url = {http://global-sci.org/intro/article_detail/jpde/23686.html} }We consider the uniform attractors of a 3D non-autonomous Brinkman– Forchheimer equation with a singularly oscillating force $$\frac{\partial u}{\partial t}-\gamma\Delta u+au+b|u|u+c|u|^2u+\nabla p=f_0(x,t)+\varepsilon^{-\rho}f_1\Bigg(x,\frac{t}{\varepsilon}\Bigg),$$ for $ρ∈[0,1)$ and $\varepsilon>0,$ and the averaged equation (corresponding to the limiting case $\varepsilon=0$) $$\frac{\partial u}{\partial t}-\gamma\Delta u+au+b|u|u+c|u|^2u+\nabla p=f_0(x,t).$$Given a certain translational compactness assumption for the external forces, we obtain the uniform boundedness of the uniform attractor $\mathcal{A}^{\varepsilon}$ of the first system in $(H^1_0(Ω))^3,$ and prove that when $\varepsilon$ tends to 0, the uniform attractor of the first system $\mathcal{A}^{\varepsilon}$ converges to the attractor $\mathcal{A}^0$ of the second system.