- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Scattering for the Non-Radial Defocusing Nonlinear Inhomogeneous Hartree Equation
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-37-278,
author = {Tong , ChengjunWu , Haigen and Xu , Chengbin},
title = {Scattering for the Non-Radial Defocusing Nonlinear Inhomogeneous Hartree Equation},
journal = {Journal of Partial Differential Equations},
year = {2024},
volume = {37},
number = {3},
pages = {278--294},
abstract = {
The purpose of this paper is to study scattering theory for the energy subcritical solutions to the non-radial defocusing inhomogeneous Hartree equation $$i\partial_tu+\Delta u=(I_\alpha\ast|\cdot|^b|u|^{p})|\cdot|^b|u|^{p-2}u.$$ Taking advantage of the decay factor in the nonlinearity instead of the embedding theorem, we establish the scattering criterion for the equation. Together with the Morawetz estimate, we obtain the scattering theory for the energy-subcritical case.
},
issn = {2079-732X},
doi = {https://doi.org/10.4208/jpde.v37.n3.4},
url = {http://global-sci.org/intro/article_detail/jpde/23343.html}
}
TY - JOUR
T1 - Scattering for the Non-Radial Defocusing Nonlinear Inhomogeneous Hartree Equation
AU - Tong , Chengjun
AU - Wu , Haigen
AU - Xu , Chengbin
JO - Journal of Partial Differential Equations
VL - 3
SP - 278
EP - 294
PY - 2024
DA - 2024/08
SN - 37
DO - http://doi.org/10.4208/jpde.v37.n3.4
UR - https://global-sci.org/intro/article_detail/jpde/23343.html
KW - Inhomogeneous Hartree equation, scattering theory, Strichartz estimates, Morawetz estimate.
AB -
The purpose of this paper is to study scattering theory for the energy subcritical solutions to the non-radial defocusing inhomogeneous Hartree equation $$i\partial_tu+\Delta u=(I_\alpha\ast|\cdot|^b|u|^{p})|\cdot|^b|u|^{p-2}u.$$ Taking advantage of the decay factor in the nonlinearity instead of the embedding theorem, we establish the scattering criterion for the equation. Together with the Morawetz estimate, we obtain the scattering theory for the energy-subcritical case.
Tong , ChengjunWu , Haigen and Xu , Chengbin. (2024). Scattering for the Non-Radial Defocusing Nonlinear Inhomogeneous Hartree Equation.
Journal of Partial Differential Equations. 37 (3).
278-294.
doi:10.4208/jpde.v37.n3.4
Copy to clipboard