- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Cited by
- BibTex
- RIS
- TXT
This paper considers the Cauchy problem of the semilinear wave equations with small initial data in the Schwarzschild space-time, $□_gu = |u_t | ^p ,$ where $g$ denotes the Schwarzschild metric. When $1< p<2$ and the initial data are supported far away from the black hole, we can prove that the lifespan of the spherically symmetric solution obtains the same order as the semilinear wave equation evolving in the Minkowski space-time by introducing an auxiliary function.
}, issn = {2079-732X}, doi = {https://doi.org/10.4208/jpde.v36.n4.6}, url = {http://global-sci.org/intro/article_detail/jpde/22137.html} }This paper considers the Cauchy problem of the semilinear wave equations with small initial data in the Schwarzschild space-time, $□_gu = |u_t | ^p ,$ where $g$ denotes the Schwarzschild metric. When $1< p<2$ and the initial data are supported far away from the black hole, we can prove that the lifespan of the spherically symmetric solution obtains the same order as the semilinear wave equation evolving in the Minkowski space-time by introducing an auxiliary function.