- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Asymptotic Stability for a Quasilinear Viscoelastic Equation with Nonlinear Damping and Memory
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-36-349,
author = {Peng , Xiaoming and Shang , Yadong},
title = {Asymptotic Stability for a Quasilinear Viscoelastic Equation with Nonlinear Damping and Memory},
journal = {Journal of Partial Differential Equations},
year = {2023},
volume = {36},
number = {4},
pages = {349--364},
abstract = {
This paper is concerned with the asymptotic behavior of a quasilinear viscoelastic equation with nonlinear damping and memory. Assuming that the kernel $\mu (s)$ satisfies $$\mu'(s)\le -k_1\mu^m(s), \ 1\le m<\frac{3}{2}$$ we establish the exponential stability result for $m=1$ and the polynomial stability result for $1<m<\frac{3}{2}$.
}, issn = {2079-732X}, doi = {https://doi.org/10.4208/jpde.v36.n4.2}, url = {http://global-sci.org/intro/article_detail/jpde/22133.html} }
TY - JOUR
T1 - Asymptotic Stability for a Quasilinear Viscoelastic Equation with Nonlinear Damping and Memory
AU - Peng , Xiaoming
AU - Shang , Yadong
JO - Journal of Partial Differential Equations
VL - 4
SP - 349
EP - 364
PY - 2023
DA - 2023/11
SN - 36
DO - http://doi.org/10.4208/jpde.v36.n4.2
UR - https://global-sci.org/intro/article_detail/jpde/22133.html
KW - Exponential stability, polynomial stability, quasilinear, nonlinear damping, memory.
AB -
This paper is concerned with the asymptotic behavior of a quasilinear viscoelastic equation with nonlinear damping and memory. Assuming that the kernel $\mu (s)$ satisfies $$\mu'(s)\le -k_1\mu^m(s), \ 1\le m<\frac{3}{2}$$ we establish the exponential stability result for $m=1$ and the polynomial stability result for $1<m<\frac{3}{2}$.
Peng , Xiaoming and Shang , Yadong. (2023). Asymptotic Stability for a Quasilinear Viscoelastic Equation with Nonlinear Damping and Memory.
Journal of Partial Differential Equations. 36 (4).
349-364.
doi:10.4208/jpde.v36.n4.2
Copy to clipboard