- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Blow-Up and Boundedness in Quasilinear Parabolic-Elliptic Chemotaxis System with Nonlinear Signal Production
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-36-262,
author = {Cao , Ruxi and Li , Zhongping},
title = {Blow-Up and Boundedness in Quasilinear Parabolic-Elliptic Chemotaxis System with Nonlinear Signal Production},
journal = {Journal of Partial Differential Equations},
year = {2023},
volume = {36},
number = {3},
pages = {262--285},
abstract = {
In this paper, we consider the quasilinear chemotaxis system of parabolic-elliptic type $$\begin{cases} u_t=\nabla\cdot(D(u)\nabla u)-\nabla\cdot(f(u)\nabla v), & x\in \Omega,\ t>0, \\ 0=\Delta v-\mu(t)+g(u), & x\in \Omega, \ t>0 \end{cases}$$
under homogeneous Neumann boundary conditions in a smooth bounded domain $\Omega\subset\mathbb{R}^n, \ n\geq1$. The nonlinear diffusivity $D(\xi)$ and chemosensitivity $f(\xi)$ as well as nonlinear signal production $g(\xi)$ are supposed to extend the prototypes $$D(\xi)=C_{0}(1+\xi)^{-m}, \ \ f(\xi)=K(1+\xi)^{k}, \ \ g(\xi)=L(1+\xi)^{l}, \ \ C_{0}>0,\xi\geq 0,K,k,L,l>0,m\in\mathbb{R}.$$ We proved that if $m+k+l>1+\frac{2}{n}$, then there exists nonnegative radially symmetric initial data $u_{0}$ such that the corresponding solutions blow up in finite time. However, the system admits a global bounded classical solution for arbitrary initial datum when $m+k+l<1+\frac{2}{n}$.
},
issn = {2079-732X},
doi = {https://doi.org/10.4208/jpde.v36.n3.2},
url = {http://global-sci.org/intro/article_detail/jpde/21888.html}
}
TY - JOUR
T1 - Blow-Up and Boundedness in Quasilinear Parabolic-Elliptic Chemotaxis System with Nonlinear Signal Production
AU - Cao , Ruxi
AU - Li , Zhongping
JO - Journal of Partial Differential Equations
VL - 3
SP - 262
EP - 285
PY - 2023
DA - 2023/08
SN - 36
DO - http://doi.org/10.4208/jpde.v36.n3.2
UR - https://global-sci.org/intro/article_detail/jpde/21888.html
KW - Chemotaxis, nonlinear diffusion, blow-up, boundedness, nonlinear signal production.
AB -
In this paper, we consider the quasilinear chemotaxis system of parabolic-elliptic type $$\begin{cases} u_t=\nabla\cdot(D(u)\nabla u)-\nabla\cdot(f(u)\nabla v), & x\in \Omega,\ t>0, \\ 0=\Delta v-\mu(t)+g(u), & x\in \Omega, \ t>0 \end{cases}$$
under homogeneous Neumann boundary conditions in a smooth bounded domain $\Omega\subset\mathbb{R}^n, \ n\geq1$. The nonlinear diffusivity $D(\xi)$ and chemosensitivity $f(\xi)$ as well as nonlinear signal production $g(\xi)$ are supposed to extend the prototypes $$D(\xi)=C_{0}(1+\xi)^{-m}, \ \ f(\xi)=K(1+\xi)^{k}, \ \ g(\xi)=L(1+\xi)^{l}, \ \ C_{0}>0,\xi\geq 0,K,k,L,l>0,m\in\mathbb{R}.$$ We proved that if $m+k+l>1+\frac{2}{n}$, then there exists nonnegative radially symmetric initial data $u_{0}$ such that the corresponding solutions blow up in finite time. However, the system admits a global bounded classical solution for arbitrary initial datum when $m+k+l<1+\frac{2}{n}$.
Cao , Ruxi and Li , Zhongping. (2023). Blow-Up and Boundedness in Quasilinear Parabolic-Elliptic Chemotaxis System with Nonlinear Signal Production.
Journal of Partial Differential Equations. 36 (3).
262-285.
doi:10.4208/jpde.v36.n3.2
Copy to clipboard