- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Cited by
- BibTex
- RIS
- TXT
In this paper, we are interested in the following nonlocal problem with critical exponent \begin{align*} \begin{cases} -\left(a-b\displaystyle\int_{\Omega}|\nabla u|^2{\rm d}x\right)\Delta u=\lambda |u|^{p-2}u+|u|^{4}u, &\quad x\in\Omega,\\ u=0, &\quad x\in\partial\Omega, \end{cases} \end{align*} where $a,b$ are positive constants, $2<p<6$, $\Omega$ is a smooth bounded domain in $\mathbb{R}^3$ and $\lambda>0$ is a parameter. By variational methods, we prove that problem has a positive ground state solution $u_b$ for $\lambda>0$ sufficiently large. Moreover, we take $b$ as a parameter and study the asymptotic behavior of $u_b$ when $b\searrow0$.
}, issn = {2079-732X}, doi = {https://doi.org/10.4208/jpde.v35.n4.6}, url = {http://global-sci.org/intro/article_detail/jpde/21055.html} }In this paper, we are interested in the following nonlocal problem with critical exponent \begin{align*} \begin{cases} -\left(a-b\displaystyle\int_{\Omega}|\nabla u|^2{\rm d}x\right)\Delta u=\lambda |u|^{p-2}u+|u|^{4}u, &\quad x\in\Omega,\\ u=0, &\quad x\in\partial\Omega, \end{cases} \end{align*} where $a,b$ are positive constants, $2<p<6$, $\Omega$ is a smooth bounded domain in $\mathbb{R}^3$ and $\lambda>0$ is a parameter. By variational methods, we prove that problem has a positive ground state solution $u_b$ for $\lambda>0$ sufficiently large. Moreover, we take $b$ as a parameter and study the asymptotic behavior of $u_b$ when $b\searrow0$.