- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Cited by
- BibTex
- RIS
- TXT
This paper, we study the multiplicity of solutions for the fractional Schrödinger equation
\begin{equation*}(-\Delta)^su+V(x)u=u^p,\ \ u>0,\ \ x\in\mathbb{R}^N,\ \ u\in H^s(\mathbb{R}^N),\end{equation*}
with $s\in(0,1),\ N\geq3,\ p\in(1,\frac{2N}{N-2s}-1)$ and $\lim_{|y|\rightarrow+\infty}V(y)>0$. By assuming suitable decay property of the radial potential $V(y)=V(|y|)$, we construct another type of solutions concentrating at infinite vertices of two similar equilateral polygonal with infinitely large length of sides. Hence, besides the length of each polygonal, we must consider one more parameter, that is the height of the podetium, simultaneously. Another difficulty lies in the non-local property of the operator $(-\Delta)^s$ and the algebraic decay involving the approximation solutions make the estimates become more subtle.
}, issn = {2079-732X}, doi = {https://doi.org/10.4208/jpde.v35.n3.5}, url = {http://global-sci.org/intro/article_detail/jpde/20775.html} }This paper, we study the multiplicity of solutions for the fractional Schrödinger equation
\begin{equation*}(-\Delta)^su+V(x)u=u^p,\ \ u>0,\ \ x\in\mathbb{R}^N,\ \ u\in H^s(\mathbb{R}^N),\end{equation*}
with $s\in(0,1),\ N\geq3,\ p\in(1,\frac{2N}{N-2s}-1)$ and $\lim_{|y|\rightarrow+\infty}V(y)>0$. By assuming suitable decay property of the radial potential $V(y)=V(|y|)$, we construct another type of solutions concentrating at infinite vertices of two similar equilateral polygonal with infinitely large length of sides. Hence, besides the length of each polygonal, we must consider one more parameter, that is the height of the podetium, simultaneously. Another difficulty lies in the non-local property of the operator $(-\Delta)^s$ and the algebraic decay involving the approximation solutions make the estimates become more subtle.