- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Cited by
- BibTex
- RIS
- TXT
In this paper, an averaging principle for the solutions to mixed stochastic differential equation involving standard Brownian motion, a fractional Brownian motion $B^{H}$ with the Hurst parameter $H>\frac{1}{2}$ and a discontinuous drift was estimated. Under some proper assumptions, we proved that the solutions of the simplified systems can be approximated to that of the original systems in the sense of mean square by the method of the pathwise approach and the Itô stochastic calculus.
}, issn = {2079-732X}, doi = {https://doi.org/10.4208/jpde.v35.n3.3}, url = {http://global-sci.org/intro/article_detail/jpde/20773.html} }In this paper, an averaging principle for the solutions to mixed stochastic differential equation involving standard Brownian motion, a fractional Brownian motion $B^{H}$ with the Hurst parameter $H>\frac{1}{2}$ and a discontinuous drift was estimated. Under some proper assumptions, we proved that the solutions of the simplified systems can be approximated to that of the original systems in the sense of mean square by the method of the pathwise approach and the Itô stochastic calculus.