- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Convergence in Wavelet Collocation Methods for Parabolic Problems
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-32-171,
author = {Zhao , JianbinLi , Siwen and Li , Hua},
title = {Convergence in Wavelet Collocation Methods for Parabolic Problems},
journal = {Journal of Partial Differential Equations},
year = {2019},
volume = {32},
number = {2},
pages = {171--180},
abstract = {
This paper studies the second-generation interpolating wavelet collocation methods in space and different Euler time stepping methods for parabolic problems. The convergence and stability are investigated. The operators are formulated using an efficient and exact formulation. The numerical results verify the efficiency of the methods.
}, issn = {2079-732X}, doi = {https://doi.org/10.4208/jpde.v32.n2.6}, url = {http://global-sci.org/intro/article_detail/jpde/13241.html} }
TY - JOUR
T1 - Convergence in Wavelet Collocation Methods for Parabolic Problems
AU - Zhao , Jianbin
AU - Li , Siwen
AU - Li , Hua
JO - Journal of Partial Differential Equations
VL - 2
SP - 171
EP - 180
PY - 2019
DA - 2019/07
SN - 32
DO - http://doi.org/10.4208/jpde.v32.n2.6
UR - https://global-sci.org/intro/article_detail/jpde/13241.html
KW - Second-generation Wavelet
KW - collocation
KW - convergence
KW - stability.
AB -
This paper studies the second-generation interpolating wavelet collocation methods in space and different Euler time stepping methods for parabolic problems. The convergence and stability are investigated. The operators are formulated using an efficient and exact formulation. The numerical results verify the efficiency of the methods.
Zhao , JianbinLi , Siwen and Li , Hua. (2019). Convergence in Wavelet Collocation Methods for Parabolic Problems.
Journal of Partial Differential Equations. 32 (2).
171-180.
doi:10.4208/jpde.v32.n2.6
Copy to clipboard