- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Cited by
- BibTex
- RIS
- TXT
Let $\mathbb{B}$ be the unit disc in $\mathbb{R}^2$, $\mathscr{H}$ be the completion of $C_0^{\infty}(\mathbb{B})$ under the norm
$$||u||_{\mathscr{H}}=\Big(\int_{\mathbb{B}}|\nabla u|^2\mathrm{d}x-\int_{\mathbb{B}}\frac{u^2}{(1-|x|^2)^2}\mathrm{d}x\Big)^{\frac{1}{2}},\quad \forall u\in C_0^{\infty}(\mathbb{B}).$$
Using blow-up analysis, we prove that for any $\gamma\leqslant 4\pi$, the supremum
$$\begin{align*}\sup_{u\in\mathscr{H},||u||_{1,h}\leqslant 1}\int_{\mathbb{B}}\mathrm{e}^{\gamma u^2}\mathrm{d}x\end{align*}$$
can be attained by some function $u_0\in \mathscr{H}$ with $||u_0||_{1,h}=1$, where $h$ is a decreasingly nonnegative, radially symmetric function, and satisfies a coercive condition. Namely there exists a constant $\delta>0$ satisfying
$$||u||_{1,h}^2=\|u\|_{\mathscr{H}}^2-\int_{\mathbb{B}}hu^2{\rm d}x\geq \delta\|u\|_{\mathscr{H}}^2,\quad\forall \, u\in\mathscr{H}.$$
This extends earlier results of Wang-Ye [1] and Yang-Zhu [2].
}, issn = {2079-732X}, doi = {https://doi.org/10.4208/jpde.v31.n4.6}, url = {http://global-sci.org/intro/article_detail/jpde/12949.html} }Let $\mathbb{B}$ be the unit disc in $\mathbb{R}^2$, $\mathscr{H}$ be the completion of $C_0^{\infty}(\mathbb{B})$ under the norm
$$||u||_{\mathscr{H}}=\Big(\int_{\mathbb{B}}|\nabla u|^2\mathrm{d}x-\int_{\mathbb{B}}\frac{u^2}{(1-|x|^2)^2}\mathrm{d}x\Big)^{\frac{1}{2}},\quad \forall u\in C_0^{\infty}(\mathbb{B}).$$
Using blow-up analysis, we prove that for any $\gamma\leqslant 4\pi$, the supremum
$$\begin{align*}\sup_{u\in\mathscr{H},||u||_{1,h}\leqslant 1}\int_{\mathbb{B}}\mathrm{e}^{\gamma u^2}\mathrm{d}x\end{align*}$$
can be attained by some function $u_0\in \mathscr{H}$ with $||u_0||_{1,h}=1$, where $h$ is a decreasingly nonnegative, radially symmetric function, and satisfies a coercive condition. Namely there exists a constant $\delta>0$ satisfying
$$||u||_{1,h}^2=\|u\|_{\mathscr{H}}^2-\int_{\mathbb{B}}hu^2{\rm d}x\geq \delta\|u\|_{\mathscr{H}}^2,\quad\forall \, u\in\mathscr{H}.$$
This extends earlier results of Wang-Ye [1] and Yang-Zhu [2].