- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Well-posedness for the Cahn-Hilliard Equation with Neumann Boundary Condition on the Half Space
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-30-344,
author = {Wang , Ling-Jun},
title = {Well-posedness for the Cahn-Hilliard Equation with Neumann Boundary Condition on the Half Space},
journal = {Journal of Partial Differential Equations},
year = {2017},
volume = {30},
number = {4},
pages = {344--380},
abstract = {
In this paper, we investigate the Cahn-Hilliard equation defined on the half space and subject to the Neumann boundary and initial condition. For given initial data in some sobolev space, we prove the existence and analytic smoothing effect of the solution.
}, issn = {2079-732X}, doi = {https://doi.org/10.4208/jpde.v30.n4.5}, url = {http://global-sci.org/intro/article_detail/jpde/10679.html} }
TY - JOUR
T1 - Well-posedness for the Cahn-Hilliard Equation with Neumann Boundary Condition on the Half Space
AU - Wang , Ling-Jun
JO - Journal of Partial Differential Equations
VL - 4
SP - 344
EP - 380
PY - 2017
DA - 2017/11
SN - 30
DO - http://doi.org/10.4208/jpde.v30.n4.5
UR - https://global-sci.org/intro/article_detail/jpde/10679.html
KW - Cahn-Hilliard equation
KW - Neumann boundary condition
KW - analyticity
KW - half space.
AB -
In this paper, we investigate the Cahn-Hilliard equation defined on the half space and subject to the Neumann boundary and initial condition. For given initial data in some sobolev space, we prove the existence and analytic smoothing effect of the solution.
Wang , Ling-Jun. (2017). Well-posedness for the Cahn-Hilliard Equation with Neumann Boundary Condition on the Half Space.
Journal of Partial Differential Equations. 30 (4).
344-380.
doi:10.4208/jpde.v30.n4.5
Copy to clipboard