- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Sharp Conditions on Global Existence and Non-Global Existence of Solutions of Cauchy Problem for 1D Generalized Boussinesq Equations.
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-30-95,
author = {Peng , Xiuyan and Niu , Yi},
title = {Sharp Conditions on Global Existence and Non-Global Existence of Solutions of Cauchy Problem for 1D Generalized Boussinesq Equations.},
journal = {Journal of Partial Differential Equations},
year = {2017},
volume = {30},
number = {2},
pages = {95--110},
abstract = { This paper consider the Cauchy problemfor a class of 1Dgeneralized Boussinesq equations utt-uxx-uxxtt+uxxxx+uxxxxtt= f(u)xx. By utilizing the potential well method and giving some conditions on f(u), we obtain the invariance of some sets and obtain the threshold result of global existence and nonexistence of solutions.},
issn = {2079-732X},
doi = {https://doi.org/10.4208/jpde.v30.n2.1},
url = {http://global-sci.org/intro/article_detail/jpde/10001.html}
}
TY - JOUR
T1 - Sharp Conditions on Global Existence and Non-Global Existence of Solutions of Cauchy Problem for 1D Generalized Boussinesq Equations.
AU - Peng , Xiuyan
AU - Niu , Yi
JO - Journal of Partial Differential Equations
VL - 2
SP - 95
EP - 110
PY - 2017
DA - 2017/05
SN - 30
DO - http://doi.org/10.4208/jpde.v30.n2.1
UR - https://global-sci.org/intro/article_detail/jpde/10001.html
KW - Generalized Boussinesq equations
KW - Cauchy problem
KW - global existence
KW - nonexistence
AB - This paper consider the Cauchy problemfor a class of 1Dgeneralized Boussinesq equations utt-uxx-uxxtt+uxxxx+uxxxxtt= f(u)xx. By utilizing the potential well method and giving some conditions on f(u), we obtain the invariance of some sets and obtain the threshold result of global existence and nonexistence of solutions.
Xiuyan Peng & Yi Niu. (2019). Sharp Conditions on Global Existence and Non-Global Existence of Solutions of Cauchy Problem for 1D Generalized Boussinesq Equations..
Journal of Partial Differential Equations. 30 (2).
95-110.
doi:10.4208/jpde.v30.n2.1
Copy to clipboard