- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Cited by
- BibTex
- RIS
- TXT
We present an extended update on the status of a particle-in-cell with Monte Carlo collisions (PIC-MCC) gun code developed at Los Alamos for the study of surface-converter H− ion sources. The program is fully kinetic. Some of the program's features include: solution of arbitrary electrostatic and magnetostatic fields in an axisymmetric (r,z) geometry to describe the self-consistent time evolution of a plasma; simulation of a multi-species (e−, H+, H2+ , H3+, H−) plasma discharge from a neutral hydrogen gas and filament-originated seed electrons; full 2-dimensional (r,z) 3-velocity (vr, vz, vφ) dynamics for all species; detailed collision physics between charged particles and neutrals and the ability to represent multiple smooth (not stair-stepped) electrodes of arbitrary shape and voltage whose surfaces may be secondary-particle emitters (H−and e−). The status of this development is discussed in terms of its physics content and current implementation details.
}, issn = {1991-7120}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cicp/7810.html} }We present an extended update on the status of a particle-in-cell with Monte Carlo collisions (PIC-MCC) gun code developed at Los Alamos for the study of surface-converter H− ion sources. The program is fully kinetic. Some of the program's features include: solution of arbitrary electrostatic and magnetostatic fields in an axisymmetric (r,z) geometry to describe the self-consistent time evolution of a plasma; simulation of a multi-species (e−, H+, H2+ , H3+, H−) plasma discharge from a neutral hydrogen gas and filament-originated seed electrons; full 2-dimensional (r,z) 3-velocity (vr, vz, vφ) dynamics for all species; detailed collision physics between charged particles and neutrals and the ability to represent multiple smooth (not stair-stepped) electrodes of arbitrary shape and voltage whose surfaces may be secondary-particle emitters (H−and e−). The status of this development is discussed in terms of its physics content and current implementation details.