- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Cited by
- BibTex
- RIS
- TXT
Approximating a function from its values f(xi) at a set of evenly spaced points xi through (N+1)-point polynomial interpolation often fails because of divergence near the endpoints, the "Runge Phenomenon". Here we briefly describe seven strategies, each employing a single polynomial over the entire interval, to wholly or partially defeat the Runge Phenomenon such that the error decreases exponentially fast with N. Each is successful in obtaining high accuracy for Runge's original example. Unfortunately, each of these single-interval strategies also has liabilities including, depending on the method, various permutations of inefficiency, ill-conditioning and a lack of theory. Even so, the Fourier Extension and Gaussian RBF methods are worthy of further development.
}, issn = {1991-7120}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cicp/7745.html} }Approximating a function from its values f(xi) at a set of evenly spaced points xi through (N+1)-point polynomial interpolation often fails because of divergence near the endpoints, the "Runge Phenomenon". Here we briefly describe seven strategies, each employing a single polynomial over the entire interval, to wholly or partially defeat the Runge Phenomenon such that the error decreases exponentially fast with N. Each is successful in obtaining high accuracy for Runge's original example. Unfortunately, each of these single-interval strategies also has liabilities including, depending on the method, various permutations of inefficiency, ill-conditioning and a lack of theory. Even so, the Fourier Extension and Gaussian RBF methods are worthy of further development.