- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 10 (2011), pp. 1089-1112.
Published online: 2011-10
Cited by
- BibTex
- RIS
- TXT
Efficient algorithms for the simulation of strained heteroepitaxial growth with intermixing in 2+1 dimensions are presented. The first of these algorithms is an extension of the energy localization method [T. P. Schulze and P. Smereka, An energy localization principle and its application to fast kinetic Monte Carlo simulation of heteroepitaxial growth, J. Mech. Phys. Sol., 3 (2009), 521–538] from 1+1 to 2+1 dimensions. Two approximations of this basic algorithm are then introduced, one of which treats adatoms in a more efficient manner, while the other makes use of an approximation of the change in elastic energy in terms of local elastic energy density. In both cases, it is demonstrated that a reasonable level of fidelity is achieved. Results are presented showing how the film morphology is affected by misfit and deposition rate. In addition, simulations of stacked quantum dots are also presented.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.101210.241210a}, url = {http://global-sci.org/intro/article_detail/cicp/7476.html} }Efficient algorithms for the simulation of strained heteroepitaxial growth with intermixing in 2+1 dimensions are presented. The first of these algorithms is an extension of the energy localization method [T. P. Schulze and P. Smereka, An energy localization principle and its application to fast kinetic Monte Carlo simulation of heteroepitaxial growth, J. Mech. Phys. Sol., 3 (2009), 521–538] from 1+1 to 2+1 dimensions. Two approximations of this basic algorithm are then introduced, one of which treats adatoms in a more efficient manner, while the other makes use of an approximation of the change in elastic energy in terms of local elastic energy density. In both cases, it is demonstrated that a reasonable level of fidelity is achieved. Results are presented showing how the film morphology is affected by misfit and deposition rate. In addition, simulations of stacked quantum dots are also presented.