- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 14 (2013), pp. 1322-1346.
Published online: 2013-11
Cited by
- BibTex
- RIS
- TXT
Many problems in biology involve gels which are mixtures composed of a polymer network permeated by a fluid solvent (water). The two-fluid model is a widely used approach to described gel mechanics, in which both network and solvent coexist at each point of space and their relative abundance is described by their volume fractions. Each phase is modeled as a continuum with its own velocity and constitutive law. In some biological applications, free boundaries separate regions of gel and regions of pure solvent, resulting in a degenerate network momentum equation where the network volume fraction vanishes. To overcome this difficulty, we develop a regularization method to solve the two-phase gel equations when the volume fraction of one phase goes to zero in part of the computational domain. A small and constant network volume fraction is temporarily added throughout the domain in setting up the discrete linear equations and the same set of equation is solved everywhere. These equations are very poorly conditioned for small values of the regularization parameter, but the multigrid-preconditioned GMRES method we use to solve them is efficient and produces an accurate solution of these equations for the full range of relevant regularization parameter values.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.180512.210313a}, url = {http://global-sci.org/intro/article_detail/cicp/7204.html} }Many problems in biology involve gels which are mixtures composed of a polymer network permeated by a fluid solvent (water). The two-fluid model is a widely used approach to described gel mechanics, in which both network and solvent coexist at each point of space and their relative abundance is described by their volume fractions. Each phase is modeled as a continuum with its own velocity and constitutive law. In some biological applications, free boundaries separate regions of gel and regions of pure solvent, resulting in a degenerate network momentum equation where the network volume fraction vanishes. To overcome this difficulty, we develop a regularization method to solve the two-phase gel equations when the volume fraction of one phase goes to zero in part of the computational domain. A small and constant network volume fraction is temporarily added throughout the domain in setting up the discrete linear equations and the same set of equation is solved everywhere. These equations are very poorly conditioned for small values of the regularization parameter, but the multigrid-preconditioned GMRES method we use to solve them is efficient and produces an accurate solution of these equations for the full range of relevant regularization parameter values.