- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 33 (2023), pp. 733-763.
Published online: 2023-04
[An open-access article; the PDF is free to any online user.]
Cited by
- BibTex
- RIS
- TXT
Bulk-surface partial differential equations (BS-PDEs) are prevalent in many applications such as cellular, developmental and plant biology as well as in engineering and material sciences. Novel numerical methods for BS-PDEs in three space dimensions (3D) are sparse. In this work, we present a bulk-surface virtual element method (BS-VEM) for bulk-surface reaction-diffusion systems, a form of semilinear parabolic BS-PDEs in 3D. Unlike previous studies in two space dimensions (2D), the 3D bulk is approximated with general polyhedra, whose outer faces constitute a flat polygonal approximation of the surface. For this reason, the method is restricted to the lowest order case where the geometric error is not dominant. The BS-VEM guarantees all the advantages of polyhedral methods such as easy mesh generation and fast matrix assembly on general geometries. Such advantages are much more relevant than in 2D. Despite allowing for general polyhedra, general nonlinear reaction kinetics and general surface curvature, the method only relies on nodal values without needing additional evaluations usually associated with the quadrature of general reaction kinetics. This latter is particularly costly in 3D. The BS-VEM as implemented in this study retains optimal convergence of second order in space.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2022-0204}, url = {http://global-sci.org/intro/article_detail/cicp/21658.html} }Bulk-surface partial differential equations (BS-PDEs) are prevalent in many applications such as cellular, developmental and plant biology as well as in engineering and material sciences. Novel numerical methods for BS-PDEs in three space dimensions (3D) are sparse. In this work, we present a bulk-surface virtual element method (BS-VEM) for bulk-surface reaction-diffusion systems, a form of semilinear parabolic BS-PDEs in 3D. Unlike previous studies in two space dimensions (2D), the 3D bulk is approximated with general polyhedra, whose outer faces constitute a flat polygonal approximation of the surface. For this reason, the method is restricted to the lowest order case where the geometric error is not dominant. The BS-VEM guarantees all the advantages of polyhedral methods such as easy mesh generation and fast matrix assembly on general geometries. Such advantages are much more relevant than in 2D. Despite allowing for general polyhedra, general nonlinear reaction kinetics and general surface curvature, the method only relies on nodal values without needing additional evaluations usually associated with the quadrature of general reaction kinetics. This latter is particularly costly in 3D. The BS-VEM as implemented in this study retains optimal convergence of second order in space.