- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 26 (2019), pp. 265-310.
Published online: 2019-02
Cited by
- BibTex
- RIS
- TXT
We develop a non-overlapping domain decomposition method (DDM) for scalar wave scattering by periodic layered media. Our approach relies on robust boundary-integral equation formulations of Robin-to-Robin (RtR) maps throughout the frequency spectrum, including cutoff (or Wood) frequencies. We overcome the obstacle of non-convergent quasi-periodic Green functions at these frequencies by incorporating newly introduced shifted Green functions. Using the latter in the definition of quasi-periodic boundary-integral operators leads to rigorously stable computations of RtR operators. We develop Nyström discretizations of the RtR maps that rely on trigonometric interpolation, singularity resolution, and fast convergent windowed quasi-periodic Green functions. We solve the tridiagonal DDM system via recursive Schur complements and establish rigorously that this procedure is always completed successfully. We present a variety of numerical results concerning Wood frequencies in two and three dimensions as well as large numbers of layers.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2018-0021}, url = {http://global-sci.org/intro/article_detail/cicp/13034.html} }We develop a non-overlapping domain decomposition method (DDM) for scalar wave scattering by periodic layered media. Our approach relies on robust boundary-integral equation formulations of Robin-to-Robin (RtR) maps throughout the frequency spectrum, including cutoff (or Wood) frequencies. We overcome the obstacle of non-convergent quasi-periodic Green functions at these frequencies by incorporating newly introduced shifted Green functions. Using the latter in the definition of quasi-periodic boundary-integral operators leads to rigorously stable computations of RtR operators. We develop Nyström discretizations of the RtR maps that rely on trigonometric interpolation, singularity resolution, and fast convergent windowed quasi-periodic Green functions. We solve the tridiagonal DDM system via recursive Schur complements and establish rigorously that this procedure is always completed successfully. We present a variety of numerical results concerning Wood frequencies in two and three dimensions as well as large numbers of layers.