@Article{CiCP-26-265, author = {Carlos Pérez-Arancibia, Stephen P. Shipman, Catalin Turc and Stephanos Venakides}, title = {Domain Decomposition for Quasi-Periodic Scattering by Layered Media via Robust Boundary-Integral Equations at All Frequencies}, journal = {Communications in Computational Physics}, year = {2019}, volume = {26}, number = {1}, pages = {265--310}, abstract = {
We develop a non-overlapping domain decomposition method (DDM) for scalar wave scattering by periodic layered media. Our approach relies on robust boundary-integral equation formulations of Robin-to-Robin (RtR) maps throughout the frequency spectrum, including cutoff (or Wood) frequencies. We overcome the obstacle of non-convergent quasi-periodic Green functions at these frequencies by incorporating newly introduced shifted Green functions. Using the latter in the definition of quasi-periodic boundary-integral operators leads to rigorously stable computations of RtR operators. We develop Nyström discretizations of the RtR maps that rely on trigonometric interpolation, singularity resolution, and fast convergent windowed quasi-periodic Green functions. We solve the tridiagonal DDM system via recursive Schur complements and establish rigorously that this procedure is always completed successfully. We present a variety of numerical results concerning Wood frequencies in two and three dimensions as well as large numbers of layers.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2018-0021}, url = {http://global-sci.org/intro/article_detail/cicp/13034.html} }