- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 26 (2019), pp. 114-134.
Published online: 2019-02
Cited by
- BibTex
- RIS
- TXT
Charge transport in suspended monolayer graphene is simulated by a numerical deterministic approach, based on a discontinuous Galerkin (DG) method, for
solving the semiclassical Boltzmann equation for electrons. Both the conduction and
valence bands are included and the interband scatterings are taken into account.
The use of a Direct Simulation Monte Carlo (DSMC) approach, which properly
describes the interband scatterings, is computationally very expensive because the valence band is very populated and a huge number of particles are needed. Also the choice
of simulating holes instead of electrons does not overcome the problem because there
is a certain degree of ambiguity in the generation and recombination terms of electron-hole pairs. Often, direct solutions of the Boltzmann equations with a DSMC neglect
the interband scatterings on the basis of physical arguments. The DG approach does
not suffer from the previous drawbacks and requires a reasonable computing effort.
In the present paper the importance of the interband scatterings is accurately evaluated for several values of the Fermi energy, addressing the issue related to the validity
of neglecting the generation-recombination terms. It is found out that the inclusion of
the interband scatterings produces huge variations in the average values, as the current, with zero Fermi energy while, as expected, the effect of the interband scattering
becomes negligible by increasing the absolute value of the Fermi energy.
Charge transport in suspended monolayer graphene is simulated by a numerical deterministic approach, based on a discontinuous Galerkin (DG) method, for
solving the semiclassical Boltzmann equation for electrons. Both the conduction and
valence bands are included and the interband scatterings are taken into account.
The use of a Direct Simulation Monte Carlo (DSMC) approach, which properly
describes the interband scatterings, is computationally very expensive because the valence band is very populated and a huge number of particles are needed. Also the choice
of simulating holes instead of electrons does not overcome the problem because there
is a certain degree of ambiguity in the generation and recombination terms of electron-hole pairs. Often, direct solutions of the Boltzmann equations with a DSMC neglect
the interband scatterings on the basis of physical arguments. The DG approach does
not suffer from the previous drawbacks and requires a reasonable computing effort.
In the present paper the importance of the interband scatterings is accurately evaluated for several values of the Fermi energy, addressing the issue related to the validity
of neglecting the generation-recombination terms. It is found out that the inclusion of
the interband scatterings produces huge variations in the average values, as the current, with zero Fermi energy while, as expected, the effect of the interband scattering
becomes negligible by increasing the absolute value of the Fermi energy.