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Abstract. Charge transport in suspended monolayer graphene is simulated by a nu-
merical deterministic approach, based on a discontinuous Galerkin (DG) method, for
solving the semiclassical Boltzmann equation for electrons. Both the conduction and
valence bands are included and the interband scatterings are taken into account.

The use of a Direct Simulation Monte Carlo (DSMC) approach, which properly
describes the interband scatterings, is computationally very expensive because the va-
lence band is very populated and a huge number of particles is needed. Also the choice
of simulating holes instead of electrons does not overcome the problem because there
is a certain degree of ambiguity in the generation and recombination terms of electron-
hole pairs. Often, direct solutions of the Boltzmann equations with a DSMC neglect
the interband scatterings on the basis of physical arguments. The DG approach does
not suffer from the previous drawbacks and requires a reasonable computing effort.

In the present paper the importance of the interband scatterings is accurately evalu-
ated for several values of the Fermi energy, addressing the issue related to the validity
of neglecting the generation-recombination terms. It is found out that the inclusion of
the interband scatterings produces huge variations in the average values, as the cur-
rent, with zero Fermi energy while, as expected, the effect of the interband scattering
becomes negligible by increasing the absolute value of the Fermi energy.

AMS subject classifications: 82D37, 82C70, 65M60, 82C80

Key words: Graphene, bipolar charge transport, discontinuous Galerkin method.

1 Introduction

The last years have witnessed a great interest in 2D-materials for their promising ap-
plications. The most investigated one is graphene which is considered as a potential
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new semiconductor material for future applications in nano-electronic [1–4] and opto-
electronic devices [5]. A reasonable and physically accurate model for charge transport is
based on semiclassical Boltzmann equations (quantum effects have also been included in
the literature, e.g. see [6,7]). Usually, the available solutions have been obtained by direct
Monte Carlo simulations, e.g. a new Direct Simulation Monte Carlo (DSMC) procedure
has been devised in [8–10] in order to properly take into account the Pauli exclusion prin-
ciple. Direct solutions of the electron transport equations with finite difference methods
have been obtained in [3] while a Discontinuous Galerkin (DG) method has been used
in [8, 11, 12]. See [13, 14] for application of the DG method to traditional semiconductors,
while numerical schemes for the Wigner equation can be found in [15]. A hydrodynam-
ical model based on the maximum entropy principle (MEP) has been formulated in [16]
using a set of field variables which proved to be successful for traditional semiconductors
as silicon [17–23], gallium arsenide [17, 24], silicon carbide [25]. In general both electrons
in the conduction and valence bands contribute to charge transport in graphene and the
zero gap energy band allows for the creation of electron-hole pairs by scattering with
phonons around the Dirac points. Therefore, one has also to include interband electron-
phonon scatterings. However, if a gate voltage is applied, it is possible to modify the
value of the Fermi energy εF creating a kind of doping as in conventional semiconduc-
tors. If εF is positive and high enough, one has a kind of n-doping and the only relevant
contribution to the current is due to the electrons in the conduction band. Analogously,
if εF <0 one has a kind of p-doping. The use of DSMC in the bipolar case is rather heavy
from a computational point of view because the valence band is very populated and a
huge number of simulation particles is needed. A viable way to overcome the problem
could be to simulate, in the valence band, holes instead of electrons. Unfortunately, this
introduces a certain degree of ambiguity in the generation and recombination terms of
electron-hole pairs and makes the approach rather questionable, as explained in the next
section. For such a reason, often the interband scattering is neglected. The DG method
does not suffer from the previous difficulties and keeps the computational effort to a rea-
sonable level. In the present paper, by performing an extensive numerical simulation
with the DG method of the system of Boltzmann equations for electrons in the conduc-
tion and valence bands, the importance of the interband scatterings is accurately evalu-
ated for several values of the Fermi energy in the case of suspended monolayer graphene
under a constant external electric field. It is addressed the issue related to the validity
of neglecting the generation-recombination terms. It is found out that the inclusion of
the interband scatterings induces huge variations in the average values, as the current,
with zero Fermi energy while, as expected, the effect of the interband scatterings becomes
negligible by increasing in absolute value the Fermi energy. The plan of the paper is as
follows. In section 2 the semiclassical model of charge transport in graphene is recalled.
In particular, there are highlighted the problems arising in the electron-hole scatterings.
In section 3 the DG method, adopted in the paper, is explained. At last, in section 4 the
numerical results are presented and the issue of the role played by the interband scatter-
ings is analyzed. Some details are postponed to the Appendix.
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2 The semiclassical charge transport in graphene

In a semiclassical kinetic setting, the charge transport in graphene is described, in gen-
eral, by four Boltzmann equations, one for electrons in the valence (π) band and one for
electrons in the conduction (π∗) band, that in turn can belong to the K or K′ valley. By
assuming the K and K′ valleys as equivalent, then we can consider only the two equations

∂ fs

∂t
+vs ·∇x fs−

e

h̄
E·∇k fs =Q( fs, f−s) (s=±1), (2.1)

where fs = fs(t,x,k) represents the distribution function of charge carriers in the conduc-
tion band (CB), for s=1, or in the valence band (VB), for s=−1, at position x, time t and
wave-vector k. We denote by ∇x and ∇k the gradients with respect to the position and
wave vector, respectively. In the sequel, for simplifying the notation, we write also f+
and f− to indicate the distributions of electrons in the conduction and valence bands.

The group velocity vs is related to the energy band εs by

vs =
1

h̄
∇k εs .

With a very good approximation [2] a linear dispersion relation holds for the energy
bands εs around the Dirac points; so that, choosing the origin of the reference frame in
the k-space coinciding with a Dirac point, we have εs = sh̄vF |k|, where vF is the (con-
stant) Fermi velocity and h̄ the Planck constant divided by 2π. The elementary (positive)
charge is denoted by e. Here the electric field E is assumed as external, and therefore we
do not include the Poisson equation. The right hand side of Eq. (2.1) is the collision term
representing the interaction of electrons with acoustic, optical and K phonons. Acoustic
phonon scattering is intravalley and intraband. Optical phonon scattering is intravalley
and can be both longitudinal (LO) and transversal (TO). It can be intraband, that is it
leaves electrons in the same band, or interband pushing electrons from an initial band
to the other one. Scattering with optical phonon of type K pushes electrons from a val-
ley to a neighbor one (intervalley scattering). We assume that phonons are at thermal
equilibrium. Hence, the general form of the collision term can be written as

Q( fs, f−s)=∑
s′

[

∫

R2
Ss′,s(k

′,k) fs′(t,x,k′)(1− fs(t,x,k))dk′

−
∫

R2
Ss,s′(k,k′) fs(t,x,k)

(

1− fs′(t,x,k′)
)

dk′
]

,

where the total transition rate is given by the sum of the contributions of the several types
of scatterings

Ss′,s(k
′,k)=∑

ν

∣

∣

∣
G
(ν)
s′,s(k

′,k)
∣

∣

∣

2[(

n
(ν)
q +1

)

δ
(

εs(k)−εs′(k
′)+ h̄ω

(ν)
q

)

+n
(ν)
q δ

(

εs(k)−εs′(k
′)− h̄ω

(ν)
q

)]

. (2.2)
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The index ν labels the νth phonon mode,
∣

∣

∣
G
(ν)
s′,s(k

′,k)
∣

∣

∣
is the matrix element, which de-

scribes the scattering mechanism, due to phonons of type ν, between electrons belonging
to the band s′ and electrons belonging to the band s. The symbol δ denotes the Dirac

distribution function, ω
(ν)
q is the the νth phonon frequency, n

(ν)
q is the Bose-Einstein dis-

tribution for the phonon of type ν

n
(ν)
q =

1

eh̄ω
(ν)
q /kBT−1

,

kB is the Boltzmann constant and T is the graphene lattice temperature which, in this

article, will be kept constant. When, for a phonon ν∗, h̄ω
(ν∗)
q ≪ kBT, then the scattering

with the phonon ν∗ can be assumed elastic. In this case, we eliminate in Eq. (2.2) the term

h̄ω
(ν∗)
q inside the delta distribution and we use the approximation n

(ν∗)
q +1≈n

(ν∗)
q .

Now we write explicitly the transition rates used in our simulations.
For acoustic phonons, usually one considers the elastic approximation, and

2n
(ac)
q

∣

∣

∣
G(ac)(k′,k)

∣

∣

∣

2
=

1

(2π)2

π D2
ac kB T

2h̄σm v2
p

(1+cosϑk,k′), (2.3)

where Dac is the acoustic phonon coupling constant, vp is the sound speed in graphene,
σm the graphene areal density, and ϑk,k′ is the convex angle between k and k′.

There are three relevant optical phonon scatterings: the longitudinal optical (LO), the
transversal optical (TO) and the K phonons. The matrix elements are

∣

∣

∣
G(LO)(k′,k)

∣

∣

∣

2
+
∣

∣

∣
G(TO)(k′,k)

∣

∣

∣

2
=

2

(2π)2

π D2
O

σm ωO
, (2.4)

∣

∣

∣
G(K)(k′,k)

∣

∣

∣

2
=

1

(2π)2

2π D2
K

σm ωK
(1−cosϑk,k′), (2.5)

where DO is the optical phonon coupling constant, ωO the optical phonon frequency, DK

is the K-phonon coupling constant and ωK the K-phonon frequency. Physical parameters
for the collision terms are summarized in Table 1.

Table 1: Physical parameters for the collision terms.

vF 108 cm/s vp 2×106 cm/s

σm 7.6×10−8 g/cm2 Dac 6.8 eV

h̄ωO 164.6 meV DO 109 eV/cm

h̄ωK 124 meV DK 3.5×108 eV/cm

In the valence band, instead of electrons, it is possible to consider holes. If we indicate
with ke the state of a missing electron in the VB and with kh and εh(kh) the state and the
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energy of the corresponding hole, they are related by the conditions [26, 27]

kh=−ke, εh(kh)=−ε−(ke).

Removing the labels to avoid unnecessarily complicated notation, the dispersion relation
for the energy of holes writes

εh(k)= h̄vF|k|.
In some classical textbooks a different formulation of the theory of holes is proposed. In
this paper we prefer the approach described in [26, 27] because, in our opinion, is more
clear from a physical point of view.

Introducing the distribution function of holes in the VB by

fh(t,x,k)=1− f−(t,x,−k),

after some algebra (the details are postponed to the Appendix A) we obtain that fh satis-
fies the equation

∂t fh(t,x,k)+vh(k)·∇x fh(t,x,k)+
e

h̄
E·∇k fh(t,x,k)=Qh( fh, f+)(t,x,k),

where vh is the group velocity of holes, that it can be shown to take the expression

vh(k)=
1

h̄
∇kεh(k),

and Qh is the collisional term for holes, which splits into

Qh( fh, f+)=Qhh( fh, fh)+Qhe( fh, f+). (2.6)

Here (by omitting the explicit dependence on t and x)

Qhh=−
∫

R2

[

S−,−(−k′,−k) fh(k)(1− fh(k
′))−S−,−(−k,−k′) fh(k

′)(1− fh(k))
]

dk′

gives the intraband hole interactions (with phonons), while

Qhe =−
∫

R2

[

S+,−(k′,−k) f+(k
′) fh(k)−S−,+(−k,k′)(1− fh(k))(1− f+(k

′))
]

dk′

represents the interband scatterings (with phonons).

At the equilibrium the distribution function of electrons in both bands is the Fermi-
Dirac distribution, given by

f±FD(t,x,k)=
1

1+exp
(

ε±−εF
kBT

) ,
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where εF is the Fermi energy and the sign ± indicates the CB (+) or the VB (−). Therefore,
the equilibrium distribution of holes is given by

f h
FD(t,x,k)=1− f−FD(t,x,−k)=1− 1

1+exp
(

ε−−εF
kBT

) =
1

1+exp
(

εh+εF
kBT

) , εh >0,

that goes to 0 when εh 7→+∞. We remark that, instead, f−FD 7→1 when ε− 7→−∞.
If we take into account only intraband transitions, the equations are uncoupled, that

is each particle belongs to the same population during the simulation. On the contrary,
if we have also interband transitions it can happen for a particle to change energy band
and thus population.

In the first case a DSMC algorithm can be construct by solving two Boltzmann equa-
tions: one for electrons in CB and one for holes in VB. In particular, the following relations

S−,−(−k′,−k)=S−,−(k′,k)=S+,+(k,k′) (2.7)

hold.
Thus, the Boltzmann equation for holes in VB, in the case when only intraband tran-

sitions occur, is the same of that of electrons in CB, except for the sign in front of the
elementary charge.

3 The numerical method

Since we expect an exponential decay of f+ and 1− f−, as |k|→+∞, it is reasonable to
choose a compact domain Ω⊆R

2, such that f+(t,x,k)≈0 and 1− f−(t,x,k)≈0, for every
k /∈Ω, and for every x and t>0.

Now we introduce a finite decomposition {Cα : α=1,2,··· ,N} of the domain Ω, with
the Cα’s open sets such that

Cα⊆Ω ∀α, Cα∩Cβ=∅ ∀α 6=β,
N
⋃

α=1

Cα=Ω.

We assume a constant approximation for each distribution function fs in every cell Cα. If
we denote by χα the characteristic function relative to the cell Cα, then

fs(t,x,k)≈ f α
s (t,x), ∀k∈Cα ⇐⇒ fs(t,x,k)≈

N

∑
α=1

f α
s (t,x)χα(k), ∀k∈

N
⋃

α=1

Cα .

A set of partial differential equations is now derived from the Boltzmann equations (2.1).
The new unknowns are the f α

s (t,x)’s instead of the distribution functions fs(t,x,k). For-
mally integrating Eq. (2.1) over each cell Cα, we obtain

∫

Cα

∂ fs

∂t
dk+

∫

Cα

vs ·∇x fs dk−
∫

Cα

e

h̄
E·∇k fs dk=

∫

Cα

Q( fs, f−s)dk. (3.1)
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The first two integrals of Eq. (3.1) can be approximated easily; in fact we have

∫

Cα

∂ fs

∂t
(t,x,k)dk+

∫

Cα

vs ·∇x fs(t,x,k)dk≈meas(Cα)
∂ f α

s

∂t
(t,x)+

[

∫

Cα

vs dk

]

·∇x f α
s (t,x),

where meas(Cα) is the measure (area) of the cell Cα.
The integral involving the electric field is transformed by using the Gauss theorem.

Of course, the result is strictly related to the geometry of the cells. We have used a recon-
struction of the fluxes based on a Min-Mod slope limiter. The interested reader is refereed
to [9] for all the details about the treatment of the drift term.

The spatial gradient ∇x fs(t,x,k) can be discretized in the same way as the drift one. In
this case the discretization depends on the geometry of the spatial domain and boundary
conditions (see for instance [13,14]). Since in this paper we consider only space homoge-
neous solutions, the details are skipped.

The treatment of the term arising from the collision operator is straightforward. If
k∈Cα, then we have

Q( fs, f−s)=∑
s′

[

(1− fs(t,x,k))
∫

Ss′,s(k
′,k) fs′(t,x,k′)dk′

− fs(t,x,k)
∫

Ss,s′(k,k′)
(

1− fs′(t,x,k′)
)

dk′
]

≈∑
s′

N

∑
β=1

[

(1− f α
s (t,x))

∫

Cβ

Ss′,s(k
′,k) fs′(t,x,k′)dk′

− f α
s (t,x)

∫

Cβ

Ss,s′(k,k′)
(

1− fs′(t,x,k′)
)

dk′
]

≈∑
s′

N

∑
β=1

[

(1− f α
s (t,x)) f

β
s′ (t,x)

∫

Cβ

Ss′,s(k
′,k)dk′

− f α
s (t,x)

(

1− f
β
s′ (t,x)

)

∫

Cβ

Ss,s′(k,k′)dk′
]

.

So, defining

A
α,β
s,s′ =

∫

Cα

[

∫

Cβ

Ss,s′(k,k′)dk′
]

dk, (3.2)

it is immediate to verify that

∫

Cα

Q( fs, f−s)dk≈∑
s′

N

∑
β=1

[

A
β,α
s′,s (1− f α

s (t,x)) f
β
s′ (t,x)−A

α,β
s,s′ f α

s (t,x)(1− f
β
s′ (t,x))

]

. (3.3)

In order to complete the numerical treatment of the Boltzmann equation it is neces-
sary to specify the numerical domain in the k-space. We choose the circle |k| ≤ kmax,
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k

k

x

y

Figure 1: Grid in polar coordinates used for the discretization of the k-domain.

where kmax is a fixed maximum value such that f+ and 1− f− are negligible for all k

such that |k|> kmax. The parameter kmax is checked a posteriori by means of numerical
experiments.

We use modified polar coordinates by setting k=
√

p(cosϑ,sinϑ), and we introduce a
regular decomposition (see Fig. 1). Hence the cell Cα is defined by the inequalities

0≤ pα < p< pα+∆p≤
√

kmax and 0≤ϑα<ϑ<ϑα+∆ϑ≤2π,

where ∆p and ∆ϑ are constant for every cell Cα.

The use of the variable
√

p instead of the modulus of k is aimed to having integrable
parameters arising from the force term of the Boltzmann equation. Now, one can obtain

the explicit expression of the numerical parameters A
α,β
s,s′ , which are given in the Appendix

B. The integrals involving the electric field are derived by means of the same technique
used in [9].

We observe that considering the distribution fh of holes in the VB instead of the one
of electrons, one gets that also fh ≈ 0 for all k /∈ Ω, similarly to f+, and this helps the
numerical approach that we use for the integration of the transport equations.

From the approximation of the distribution functions, the average values of density,
velocity and energy are reconstructed as follows

ρe(t,x) :=
2

(2π)2

∫

f+(t,x,k)dk≈ 2

(2π)2

N

∑
α=1

meas(Cα) f α
+(t,x),

<ve> (t,x) :=
1

ρe(t,x)

2

(2π)2

∫

f+(t,x,k)v+(k)dk

≈ 1

ρe(t,x)

2

(2π)2

N

∑
α=1

[

∫

Cα

v+(k)dk

]

f α
+(t,x),
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< εe > (t,x) :=
1

ρe(t,x)

2

(2π)2

∫

f+(t,x,k)ε+(k)dk

≈ 1

ρe(t,x)

2

(2π)2

N

∑
α=1

[

∫

Cα

ε+(k)dk

]

f α
+(t,x),

ρh(t,x) :=
2

(2π)2

∫

(1− f−(t,x,−k))dk≈ 2

(2π)2

N

∑
α=1

meas(Cα)(1− f α
−(t,x)),

<vh> (t,x) :=
1

ρh(t,x)

2

(2π)2

∫

fh(t,x,k)vh(k)dk

=
1

ρh(t,x)

2

(2π)2

∫

(1− f−(t,x,−k))vh(k)dk

=
1

ρh(t,x)

2

(2π)2

∫

(1− f−(t,x,−k))v+(k)dk

≈− 1

ρh(t,x)

2

(2π)2

N

∑
α=1

[

∫

Cα

v+(k)dk

]

(1− f α
−(t,x)),

< εh > (t,x) :=
1

ρh(t,x)

2

(2π)2

∫

(1− f−(t,x,−k))ε+(k)dk

≈ 1

ρh(t,x)

2

(2π)2

N

∑
α=1

[

∫

Cα

ε+(k)dk

]

(1− f α
−(t,x)).

The above integrals are easily evaluated by taking into account that

meas(Cα)=
1

2
∆p∆ϑ,

∫

Cα

vs dk= svF ∆p

(

cos

(

ϑ+
∆ϑ

2

)

sin
∆ϑ

2
,sin

(

ϑ+
∆ϑ

2

)

sin
∆ϑ

2

)

,

∫

Cα

εs(k)dk=
1

3
svF h̄∆ϑ

[

√

(pα+∆p)3−
√

(pα)3

]

.

Regarding the current density J, it is given by the sum of the contribution from elec-
trons in the CB band and holes in the VB

J= Je+Jh.

The term Je is given by −eρe <ve > while

Jh = e
2

(2π)2

∫

(1− f−(t,x,−k))vh(k)dk=−e
2

(2π)2

∫

(1− f−(t,x,k))vh(k)dk.

Remark 3.1. The fact that the valence band is populated with a huge number of electrons
(recall that f− ≈ 1 when |k| ≫ 1), requires in a DSMC the introduction of a prohibitive
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number of particles. To overcome the problem one can consider holes in the valence band.
However, such a choice has the drawback to make ambiguous the interband scattering
mechanism, as explained below.

Let us consider an electron having energy ε. If it happens that 0< ε< h̄ω(ν) and an
emission of a νth phonon occurs, where ν is OP or K, then an interband scattering event
takes place. After the transition the electron will have a state determined according to
the νth transition rate (see [8]) and the new energy.

If we try to rewrite this interband scattering in terms of holes, instead of electrons, in
the valence band, then the electron recombines with a hole. In order to have a recombi-
nation we need to find a hole having exactly the energy h̄ω(ν)−ε and this can be achieved
only in an approximate, often roughly, way.

The treatment of the case when a hole has an energy 0 < ε < h̄ω(ν) is even worse.
After the scattering event the considered hole can disappear through two different mech-
anisms: an electron coming from the conduction band recombines with a hole or an elec-
tron of the valence band occupies the position of the hole leaving behind an other hole.
The only viable approach to discriminate between the two occurrences is to describe both
electrons and holes in the valence band and again we have to face the question related to
the huge number of required simulation particles.

A similar ambiguity arises for the description of electron-hole pair creation.

The above considerations clearly indicate that the deterministic methods, as the DG
adopted in the present paper, are the only reasonable ones for solving the transport equa-
tions for charge carriers in graphene in the presence of interband scatterings.

4 Numerical results

The physical situation we are going to simulate is that of a strip of graphene which is
infinitely long in the transversal direction with respect to that of the electric field (see
Fig. 2). This allows us to look for solutions which are not depending on space and to
avoid any effect related to the boundary conditions.

We have considered several values of the Fermi energy and different applied electric
fields.

Figure 2: Schematic representation of a suspended monolayer graphene. In the direction parallel to the contacts
the material is infinitely long. In each contact there is a constant electrostatic potential.
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4.1 Case εF =0 eV

This case represents a pristine graphene and it is the most challenging for the correct eval-
uation of the role of the interband scattering. In Fig. 3 there is shown the density versus
time (in logarithmic scale). During a long transient of a few hundreds of picoseconds,
the concentration of both charge carriers increases up to saturation values depending on
the applied electric field. The effect is that of carrier multiplications and it is due to the
fact that the generation term overcomes for a long time that of recombination with the
results of the creation of electron-hole pairs. Only after about 200 picosecond the conduc-
tion band is populated enough so that Pauli’s exclusion principle becomes so efficient
to prevent the formation of additional electron-hole pairs. A similar phenomenon had
have been observed for example in [28] and in [29] analyzing the optical properties of
graphene in view of possible applications to solar cells.

We remark that when εF =0 eV, the electron and hole densities are the same. For this
reason only the electron density is plotted. Of course, neglecting the interband scatter-
ings, the densities do not change with time. For comparison, also the densities without
interband scattering are reported in the figures.
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Figure 3: Electron density versus time when εF =0 eV under an applied electric field of 1, 3, 5, 7 kV/cm with
(A) and without (B) interband scatterings.
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Figure 4: Total current versus time when εF =0 eV under an applied electric field of 1, 3, 5, 7 kV/cm with (A)
and without (B) interband scatterings.

In Fig. 4 the total current (electrons plus holes) is plotted versus time. Similarly to the
density, the current increases with time, apart an initial transient. The carrier multiplica-
tion leads to a considerably higher current with respect to the case when only intraband
scatterings are included. The steady total current versus the electric field is reported in
Fig. 5. Note that neglecting the interband scatterings introduces an error of about 400%
for the highest electric field considered in the simulation (10 kV/cm).

4.2 Case εF =0.1 eV

In order to assess the influence of the Fermi level, the case with εF = 0.1 eV has been
also analyzed. The results are shown in Figs. 6, 7, 8. First we note that the electron and
hole densities are no longer equal. Moreover, as expected, the difference is about two
orders of magnitude because electrons are the majority carriers when the Fermi energy
is positive. The maximum change obtained in the simulations with respect to the case
without interband scatterings is less than 1% for electrons and more than 90% for holes.
This means that neglecting the interband effects leads to severely underestimate the hole
density. Regarding the discrepancy in the current, for the electric field of 10 kV/cm one
has a relative difference of about 22%.
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Figure 5: Steady total current versus electric field when εF=0 eV with (A) and without (B) interband scatterings.
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Figure 6: Electron density (left column) and hole density (right column) versus time when εF =0.1 eV under an
applied field of 1, 3, 5 kV/cm with (A) and without (B) interband scatterings.
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Figure 7: Total current versus time when εF = 0.1 eV under an applied electric field of 1, 3, 5, 7 kV/cm with
(A) and without (B) interband scatterings.
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Figure 8: Steady total current versus electric field when εF =0.1 eV.

If the reverse sign of Fermi energy is considered, we have the same results by inter-
changing the role of electrons and holes.

4.3 Case εF =0.2 eV

Finally, the case with εF =0.2 eV has been analyzed. The results are shown in Figs. 9, 10,
11. The transient is shorter: the Pauli exclusion principle drastically reduces the forma-
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Figure 9: Electron density (left column) and hole density (right column) versus time when εF =0.2 eV under an
applied electric field of 1, 3, 5 kV/cm.

tion of electron-hole pairs already after few picoseconds. The electron density remains
practically unchanged, while that of holes increases more than one order of magnitude.
However, the difference between the majority and minority charges is so high that, for
Fermi levels greater or equal to 0.2 eV, the simulation can be performed with a good accu-
racy disregarding the interband effects. If the reverse sign of Fermi energy is considered,
we have again the same results by interchanging the role of electrons and holes.



A. Majorana, G. Nastasi and V. Romano / Commun. Comput. Phys., 26 (2019), pp. 114-134 129

1  100
Time (ps)

0

2

4

6

8

10

12

C
ur

re
nt

 d
en

si
ty

 (
A

/c
m

)

Electric field: 1 kV/cm

A
B

0.01 1   100 
Time (ps)

0

5

10

15

C
ur

re
nt

 d
en

si
ty

 (
A

/c
m

)

Electric field: 3 kV/cm

A
B

0.01 1   100 
Time (ps)

0

5

10

15

20

C
ur

re
nt

 d
en

si
ty

 (
A

/c
m

)

Electric field: 5 kV/cm

A
B

0.01 1   100 
Time (ps)

0

5

10

15

20

C
ur

re
nt

 d
en

si
ty

 (
A

/c
m

)

Electric field: 7 kV/cm

A
B

Figure 10: Total current versus time when εF =0.2 eV under an applied electric field of 1, 3, 5, 7 kV/cm.
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Figure 11: Steady total current versus electric field when εF =0.2 eV.

5 Conclusions

Charge transport in suspended monolayer graphene has been simulated by a numerical
deterministic approach, based on a discontinuous Galerkin (DG) method, for solving
the semiclassical Boltzmann equations for electrons and holes. Both the conduction and
valence bands have been included and the interband scatterings have been taken into
account.
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The importance of the interband scatterings has been accurately evaluated for several
values of the Fermi energy. It is found out that the inclusion of the interband scatterings
produces, with zero Fermi energy, huge variations in the current, while, as expected, the
effect of the interband scatterings becomes negligible by increasing the absolute value of
the Fermi energy. When εF is greater than 0.2 eV, the interband effects can be eliminated
without any significant consequence in the simulations.
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Appendix A

Deduction of the Boltzmann equation for holes

Starting from the Boltzmann equation for f− one has

∂t f−(t,x,k)+v−(k)·∇x f−(t,x,k)− e

h̄
E·∇k f−(t,x,k)=Q( f−, f+)(t,x,k), (A.1)

where

v−(k)=
1

h̄
∇kε−(k)=−1

h̄
h̄vF∇k|k|=−vF

k

|k|
and

Q( f−, f+)=
∫

R2

[

S−,−(k′,k) f−(k′)(1− f−(k))−S−,−(k,k′) f−(k)(1− f−(k′))
]

dk′

+
∫

R2

[

S+,−(k
′,k) f+(k

′)(1− f−(k))−S−,+(k,k′) f−(k)(1− f+(k
′))
]

dk′.

We would like to get the distribution of missing electron states, that are the holes. For
these quasi-particles the following definitions hold

kh=−ke, εh(kh)=−ε−(ke).

Thus the dispersion relation and the distribution function for holes can be written respec-
tively as

εh(k)= h̄vF|k|, fh(t,x,k)=1− f−(t,x,k),

and the group velocity is

vh(k)=
1

h̄
∇kεh(k)=vF

k

|k| .
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Relabeling the variable k of equation (A.1) with −k, the Boltzmann equation for the dis-
tribution function of missing electrons is

∂t(1− f−(t,x,−k))+v−(−k)·∇x(1− f−(t,x,−k))− e

h̄
E·∇−k(1− f−(t,x,−k))

=−Q( f−, f+)(t,x,−k).

After observing that

v−(−k)=−vF
−k

|−k| =vh(k),

we have

∂t fh(t,x,k)+vh(k)·∇x fh(t,x,k)+
e

h̄
E·∇k fh(t,x,k)=−Q( f−, f+)(t,x,−k).

Regarding the collisional term, we have

−Q( f−, f+)(t,x,−k)

=−
∫

R2

[

S−,−(k
′,−k) f−(k

′)(1− f−(−k))−S−,−(−k,k′) f−(−k)(1− f−(k
′))
]

dk′

−
∫

R2

[

S+,−(k′,−k) f+(k
′)(1− f−(−k))−S−,+(−k,k′) f−(−k)(1− f+(k

′))
]

dk′

=−
∫

R2

[

S−,−(k
′,−k)(1− fh(−k′)) fh(k)−S−,−(−k,k′)(1− fh(k)) fh(−k′)

]

dk′

−
∫

R2

[

S+,−(k′,−k) f+(k
′) fh(k)−S−,+(−k,k′)(1− fh(k))(1− f+(k

′))
]

dk′

=−
∫

R2

[

S−,−(−k′,−k) fh(k)(1− fh(k
′))−S−,−(−k,−k′) fh(k

′)(1− fh(k))
]

dk′

−
∫

R2

[

S+,−(k′,−k) f+(k
′) fh(k)−S−,+(−k,k′)(1− fh(k))(1− f+(k

′))
]

dk′,

where the last step is obtained by performing a change of variables k′→−k′. Definitely
the collisional term writes

−Q( f−, f+)(t,x,−k)=Qhh( fh, fh)(t,x,k)+Qhe( fh, f+)(t,x,k),

where, omitting the dependencies on t and x,

Qhh =−
∫

R2

[

S−,−(−k′,−k) fh(k)(1− fh(k
′))−S−,−(−k,−k′) fh(k

′)(1− fh(k))
]

dk′,

Qhe =−
∫

R2

[

S+,−(k′,−k) f+(k
′) fh(k)−S−,+(−k,k′)(1− fh(k))(1− f+(k

′))
]

dk′.

Let us consider the particular case where only intraband transitions are taken into ac-
count. The equation writes

∂t fh(t,x,k)+vh(k)·∇x fh(t,x,k)+
e

h̄
E·∇k fh(t,x,k)=Qhh(t,x,k). (A.2)

It is possible to prove that S−,−(−k′,−k) = S−,−(k′,k) by using geometrical considera-
tions on the involved angles and, therefore, the relation S−,−(k′,k)=S+,+(k,k′) holds.
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Appendix B

Since the transition matrix elements
∣

∣

∣
G
(ν)
s,s′ (k,k′)

∣

∣

∣
depend only on the convex angle be-

tween k and k′, we can write

A
α,β
s,s′ =

1

4 ∑
ν

Γ
(ν)
s,s′(α,β)

∫ pα+∆p

pα

∫ pβ+∆p

pβ

[(

n
(ν)
q +1

)

δ
(

s′ h̄vF

√

p′−sh̄vF
√

p+ h̄ω
(ν)
q

)

+n
(ν)
q δ

(

s′ h̄vF

√

p′−sh̄vF
√

p− h̄ω
(ν)
q

)]

dp′dp, (B.3)

where

Γ
(ν)
s,s′(α,β)=

∫ ϑα+∆ϑ

ϑα

∫ ϑβ+∆ϑ

ϑβ

∣

∣

∣
G
(ν)
s,s′ (k,k′)

∣

∣

∣

2
dϑ′dϑ . (B.4)

The integrals in Eq. (B.4) are elementary. The integrals in Eq. (B.3) can be solved analyti-
cally, taking into account that

I(α,β,s,s′,±ω
(ν)
q )=

1

4

∫ pα+∆p

pα

∫ pβ+∆p

pβ

δ
(

s′ h̄vF

√

p′−sh̄vF
√

p± h̄ω
(ν)
q

)

dp′dp

=
1

|s′|h̄vF

∫

√
pα+∆p

√
pα

∫

√
pβ+∆p

√
pβ

δ

(

r′− s

s′
r±ω

(ν)
q

s′vF

)

rr′dr′dr

=
1

h̄vF

∫

√
pα+∆p

√
pα

[

∫

R

χ[√pβ,
√

pβ+∆p](r
′)δ

(

r′− s

s′
r±ω

(ν)
q

s′vF

)

r′dr′
]

rdr

=
1

h̄vF

∫

√
pα+∆p

√
pα

(

s

s′
r∓ω

(ν)
q

s′vF

)

χ[√pβ ,
√

pβ+∆p]

(

s

s′
r∓ω

(ν)
q

s′vF

)

rdr,

where χ[√pβ ,
√

pβ+∆p] is the characteristic function in the interval
[

√

pβ,
√

pβ+∆p
]

.

Now, we define the set

{

r∈R such that
√

pα≤ r≤
√

pα+∆p and
√

pβ ≤
s

s′
r∓ω

(ν)
q

s′vF
≤
√

pβ+∆p

}

,

which is the empty set or an interval [a,b]. In the first case the integral vanishes, and in
the last case, we have

I(α,β,s,s′ ,±ω
(ν)
q )=

1

h̄vF

∫ b

a

(

s

s′
r2∓ω

(ν)
q

s′vF
r

)

dr,

that is an elementary integral.
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