- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 24 (2018), pp. 204-233.
Published online: 2018-03
Cited by
- BibTex
- RIS
- TXT
This paper develops a second-order multiscale asymptotic analysis and numerical algorithms for predicting heat transfer performance of porous materials with quasi-periodic structures. In these porous materials, they have periodic configurations and associated coefficients are dependent on the macro-location. Also, radiation effect at microscale has an important influence on the macroscopic temperature fields, which is our particular interest in this study. The characteristic of the coupled multiscale model between macroscopic scale and microscopic scale owing to quasi-periodic structures is given at first. Then, the second-order multiscale formulas for solving temperature fields of the nonlinear problems are constructed, and associated explicit convergence rates are obtained on some regularity hypothesis. Finally, the corresponding finite element algorithms based on multiscale methods are brought forward and some numerical results are given in detail. Numerical examples including different coefficients are given to illustrate the efficiency and stability of the computational strategy. They show that the expansions to the second terms are necessary to obtain the thermal behavior precisely, and the local and global oscillations of the temperature fields are dependent on the microscopic and macroscopic part of the coefficients respectively.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2017-0103}, url = {http://global-sci.org/intro/article_detail/cicp/10934.html} }This paper develops a second-order multiscale asymptotic analysis and numerical algorithms for predicting heat transfer performance of porous materials with quasi-periodic structures. In these porous materials, they have periodic configurations and associated coefficients are dependent on the macro-location. Also, radiation effect at microscale has an important influence on the macroscopic temperature fields, which is our particular interest in this study. The characteristic of the coupled multiscale model between macroscopic scale and microscopic scale owing to quasi-periodic structures is given at first. Then, the second-order multiscale formulas for solving temperature fields of the nonlinear problems are constructed, and associated explicit convergence rates are obtained on some regularity hypothesis. Finally, the corresponding finite element algorithms based on multiscale methods are brought forward and some numerical results are given in detail. Numerical examples including different coefficients are given to illustrate the efficiency and stability of the computational strategy. They show that the expansions to the second terms are necessary to obtain the thermal behavior precisely, and the local and global oscillations of the temperature fields are dependent on the microscopic and macroscopic part of the coefficients respectively.