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Abstract. This paper develops a second-order multiscale asymptotic analysis and nu-
merical algorithms for predicting heat transfer performance of porous materials with
quasi-periodic structures. In these porous materials, they have periodic configurations
and associated coefficients are dependent on the macro-location. Also, radiation ef-
fect at microscale has an important influence on the macroscopic temperature fields,
which is our particular interest in this study. The characteristic of the coupled multi-
scale model between macroscopic scale and microscopic scale owing to quasi-periodic
structures is given at first. Then, the second-order multiscale formulas for solving tem-
perature fields of the nonlinear problems are constructed, and associated explicit con-
vergence rates are obtained on some regularity hypothesis. Finally, the corresponding
finite element algorithms based on multiscale methods are brought forward and some
numerical results are given in detail. Numerical examples including different coeffi-
cients are given to illustrate the efficiency and stability of the computational strategy.
They show that the expansions to the second terms are necessary to obtain the thermal
behavior precisely, and the local and global oscillations of the temperature fields are
dependent on the microscopic and macroscopic part of the coefficients respectively.
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1 Introduction

Porous materials are widely applied in the aeronautic and aerospace engineering owing
to the good thermal stability, low relative density and high heat resistance. In particu-
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lar, porous materials are usually designed for thermal protection system (TPS) during
the spacecraft’s flying out or re-entry into the atmosphere. Under such condition, the
temperature of spacecraft’s surface will be high enough in a moment, and heat radiation
should not be omitted in actual calculations. Also, as the materials often have periodic
configurations and characteristic coefficients oscillate sharply in small cells, it is neces-
sary and important to develop an effective method to predict the thermal and mechanical
performance of the porous materials.

Solving the heat radiative problem in porous materials by a direct numerical method
becomes rather difficult since it would cost huge computer memories and time to ac-
curately catch the local fluctuation behavior of temperature fields even for the super-
computer. Generally, homogenization methods and associated multiscale algorithms de-
scribe the global behavior by reduce the governing equations with rapidly varying coeffi-
cients to the equations with effective coefficients, which can not only save the computing
resources but also guarantee the calculation precision [1–7]. Moreover, by adding appro-
priate correctors, the approximate solutions with oscillatory behavior can also be repro-
duced availably [8–10]. Up to now, some homogenization and multiscale methods were
developed to study the heat conduction-radiation problems arising from porous mate-
rials. Liu and Zhang [11] investigated the effective macroscopic properties of radiative-
conductive heat transfer problems in periodic porous materials. Bakhvalov [12] gave the
asymptotic expansion forms for the solutions of those problems. Allaire and El Ganaoui
[13] studied the heat transfer problems with ε−1-order radiation boundary by two-scale
expansion methods, and justified the convergence. Meanwhile, Ma and Cui [14] pro-
posed a second-order two-scale method to solve the coupled problems, and obtained
the convergence order with O(ε1/2). Cui et al. [15–17] discussed the heat conduction
and radiation problems in periodic or random porous materials, and developed a newly
higher-order multiscale method for the problems. Later, Yang, Sun and Cui [18, 19] ob-
tained the second-order multiscale solutions for the dynamic thermo-elastic problems
of porous materials with interior surface radiation. Obviously, from the works men-
tioned previously, the homogenization method and the associated multiscale techniques
can give sufficiently effective predictions of the thermal and thermo-mechanical coupling
properties of arbitrarily sophisticated microstructures. Also, such techniques and algo-
rithms can perform calculation of the temperature and heat flux fields on the macro scale
according to the effective coefficients obtained at the microscopic scale.

Generally speaking, owing to composite materials manufacturing technology, such
as fatigue damages, the material parameters are no longer periodic, but local-periodic,
i.e., quasi-periodic. In other words, the material coefficients can depend not only on the
microscale information but also on the macro location. Functionally gradient materials
(FGM) are a representative material with quasi-periodic structures [20–23]. Based on the
traditional homogenization methods, Lions [1] systematically investigated the elliptical
boundary value problems with quasi-periodic structures. Wirth [24] proposed a space
dimensions method multiplied by different scales to efficiently treat quasi-periodic and
multiscale problems. Andrianov et al. [25] applied a novel asymptotical approach to in-
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tegrate differential equations arising from quasi-regular structures. Cao [26] gave a first-
order multiscale expansion and detailed theoretical analysis for linear elasticity prob-
lems with quasi-periodic structures. Further, Ma and Su [9, 27, 28] developed a second-
order multiscale method for heat conduction problems, linear elasticity and thermo-
elastic problems with quasi-periodic structures. Recently, Don et al. [29] performed a
second-order two-scale analysis method for the damped wave equations of composite
materials with a quasi-periodic structure, and obtained the error estimates based on some
reasonable assumptions. However, the previous multiscale asymptotic expansions and
algorithms cannot be directly employed to the heat conduction-radiation problems due
to the nonlinearity of the coupled problems and the complexity microstructure of porous
materials.

In this work, we will mainly discuss the heat conduction-radiation problems of porous
materials with a quasi-periodic structure. Particularly, the nonlinear heat radiation ac-
count for the scale effect and sophisticated microstructures of the porous materials are
considered in this study. The radiation boundary condition was investigated by Liu and
Zhang [11], Bakhvalov [12] and Yang et al. [15–19], and it is a classical physical model
in practical applications. This paper is to establish a novel high-order multiscale method
with less effort and computational cost to give a better approximation. We introduce cor-
rection terms into the first-order asymptotic expansions of the temperature fields, define
a series of cell functions, and then obtain the approximate error estimates under some
regularity hypothesis.

The outline of this paper is organized as follows. Section 2 describes the detailed gov-
erning equations of heat conduction-radiation problems of porous materials with quasi-
periodic structures. In Section 3, the multiscale asymptotic expansions for the nonlinear
heat transfer problems are presented. In Section 4, the error estimates on the approximate
solutions are analyzed under some reasonable assumptions, and the multiscale finite el-
ement algorithms are given in Section 5. In Section 6, some numerical results are demon-
strated to verify the validity of the multiscale algorithms. Finally, some conclusions are
presented in Section 7.

Throughout the paper the Einstein summation convention on repeated indices is
adopted.

2 Governing equations of heat conduction-radiation problems

In this section, the heat conduction-radiation equations in porous materials with quasi-
periodic structures are constructed in detail.

Let Y=
{

y : 0≤yj ≤1, j=1,2,3
}

and ω be an unbounded domain of R3 which satisfies
following conditions:

(B1) ω is a smooth domain of R3 with a periodic structure.

(B2) The unit cell of periodicity Y∗=ω∩Y is a domain with a Lipschitz boundary, as
illustrated in Fig. 1(b).
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(B3) The set Y\ω̄ and the intersection of Y\ω̄ with the δ0(δ0 << 1) neighborhood of
∂Yconsist of finite number of Lipschitz domains separated from each other and from the
edges of the cube Y by a positive distance.

(B4) The cavities are convex.

Then, the domain Ωε has the form: Ωε =Ω∩εω, as shown in Fig. 1(a), where Ω is a
bounded Lipschitz convex domain without pores. The surfaces of cavities are supposed
to be diffuse and grey, i.e., the emissivity e of the surfaces does not depend on the wave-
length and direction of the radiation. Here ε>0 is a small parameter, and it denotes the
relative size between a unit cell and the whole domain of the materials.

The heat radiation problems of porous materials with rapidly oscillatory coefficients
can be defined in a closed cavity as follows:

−vikij

(

x,
x

ε

)∂Tε(x,t)

∂xj
= eσT4

ε (x,t)−e
∫

Γc
ε,m

Rε(z,t)F(x,z)dz, on Γc
ε, (2.1)

where Tε(x,t) denotes the temperature fields, σ is the Stefan-Boltzmann constant, and
v=(vi), i=1,2,3 is the unit outward normal on surfaces Γc

ε of the cavities. Rε(z,t) is the
intensity of emitted radiation defined by

Rε(x,t)= eσT4
ε (x,t)+(1−e)

∫

Γc
ε,m

Rε(z,t)F(x,z)dz, ∀x∈Γc
ε,m, (2.2)

where Γc
ε,m is the interior boundary of a cavity, such that Γc

ε =
m(ε)
⋃

i=1
Γc

ε,i, and m(ε) is the

number of cavities in the porous materials. F(x,z) denotes the view factor, and is defined
on 3-D for a convex cavity as follows (Refs. [12–15]):

F(x,z)=
nz ·(x−z)nx ·(z−x)

π|z−x|4
,

where nz is the unit normal at the point z, and for any (x,z)∈(Γc
ε,m)

2 (for a closed surface),
which satisfies the following properties:

F(x,z)≥0, F(x,z)=F(z,x),
∫

Γc
ε,m

F(x,z)dz=1.

Under the aforementioned assumptions, we consider the heat conduction-radiation
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Figure 1: Periodic distribution of porous materials: (a) Domain Ωε; (b) Unit cell Y∗.

equations with initial-boundary value conditions for a given structure as follows:


























































∂Tε(x,t)

∂t
−

∂

∂xi

(

kij

(

x,
x

ε

)∂Tε(x,t)

∂xj

)

= f (x,t), (x,t)∈Ωε×(0,t∗),

Tε(x,t)= T̄, (x,t)∈Γ×(0,t∗),

Tε(x,0)=Tin(x), x∈Ωε,

−vikij

(

x,
x

ε

)∂Tε(x,t)

∂xj

= eσT4
ε (x,t)−e

∫

Γc
ε,m

Rε(z,t)F(x,z)dz, (x,t)∈Γc
ε×(0,t∗),

(2.3)

where f (x,t) is the internal thermal source; Tin(x) denotes the initial temperature fields.
The boundary can be expressed as ∂Ωε=Γ∪Γc

ε , Γ denotes the external boundary portions
where temperature fields are prescribed. T̄ is the value of a temperature component.
kij(x, x

ε ) (i, j = 1,2,3) is the thermal conductivity tensor, and satisfies the conditions of
symmetry

kij

(

x,
x

ε

)

= kji

(

x,
x

ε

)

,

and ellipticity

λ1γiγi6kij

(

x,
x

ε

)

γiγj6λ2γiγi,

where λ1 and λ2 are constants independent of x, and γi (i=1,2,3) is an arbitrary vector
with real elements. Let y= x/ε, y denotes the local coordinate, then temperature fields
Tε(x,t) and heat conduction coefficients kij(x, x

ε ) (i, j = 1,2,3) change into T(x,y,t) and
kij(x,y), respectively. Since the physical parameters of the porous materials are no longer
periodic, but local-periodic, i.e., quasi-periodic, the conduction coefficients depend not
only on the microscale but also on the specific location of the macroscale. For simplicity,
let Tε =Tε(x,t), T0=T0(x,t) and f = f (x,t) in the following.
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Remark 2.1. By suppositions (B1)-(B4), the existence and uniqueness of the weak solution
Tε(x,t) for the initial-boundary value problems (2.3) can be established (see Refs. [30,31]).

3 The multiscale asymptotic expansions

In this section, the multiscale asymptotic expansion methods are developed to solve
the transient heat conduction-radiation problems (2.3) of porous materials with quasi-
periodic structures.

3.1 Cell problems, homogenized problems and homogenized coefficients

Firstly, enlightened by Refs. [1, 2], Tε(x,t) can be expanded into a series in the following
form:

Tε(x,t)=T0(x,y,t)+εT1(x,y,t)+ε2T2(x,y,t)+··· , (3.1)

Then

T4
ε (x,t)=(T0(x,y,t)+εT1(x,y,t)+ε2T2(x,y,t)+···)4

=T4
0 +ε(4T3

0 T1)+ε2(6T2
0 T2

1 +4T3
0 T2)+··· . (3.2)

Owing to y= x/ε for y∈Y, the partial derivative can be defined as:

∂

∂xi
→

∂

∂xi
+

1

ε

∂

∂yi
, i=1,2,3. (3.3)

Substituting (3.1) and (3.3) into (2.3) and considering the coefficients of ε−2,ε−1,ε0, one
obtains the following three equations:

O(ε−2) : −
∂

∂yi

(

kij(x,y)
∂T0

∂yj

)

=0, (3.4)

O(ε−1) : −
∂

∂yi

(

kij(x,y)
∂T1

∂yj

)

−
∂

∂yi

(

kij(x,y)
∂T0

∂xj

)

−
∂

∂xi

(

kij(x,y)
∂T0

∂yj

)

=0, (3.5)

O(ε0) : −
∂

∂yi

(

kij(x,y)
∂T2

∂yj

)

−
∂

∂yi

(

kij(x,y)
∂T1

∂xj

)

−
∂

∂xi

(

kij(x,y)
∂T1

∂yj

)

−
∂

∂xi

(

kij(x,y)
∂T0

∂xj

)

= f (x,t). (3.6)

Also, considering the radiative boundary terms given in (2.3), we have that

−vikij(x,y)
( ∂

∂xi
+

1

ε

∂

∂yi

)

=−vi
1

ε
kij(x,y)

∂

∂yi
−vikij(x,y)

∂

∂xi
. (3.7)

Let
Bε= ε−1B0+B1, (3.8)
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where

B0=−vikij(y)
∂

∂yi
,

B1=−vikij(y)
∂

∂xi
.

(3.9)

Similarly to (3.1), Rε(x,t) has the following multiscale asymptotic expansions

Rε(x,t)=R0(x,t)+εR1(x,y,t)+ε2R2(x,y,t)+··· . (3.10)

Taking (3.2) into the radiation terms of (2.3) and utilizing (3.8)-(3.10) can lead to the
following identities

BεTε =ε−1B0T0+B1T0+B0T1+ε(B1T1+B0T2)

=eσT4
ε (x,t)−e

∫

Γc
ε,i

Rε(z,t)F(x,z)dz

=eσT4
0 (x,y,t)−e

∫

Γc
R0(x,t)F(y,s)ds

+ε(4eσT3
0 (x,y,t)T1(x,y,t)−e

∫

Γc
R1(x,s,t)F(y,s)ds)

+O(ε2), (3.11)

R0(x,t)+εR1(x,y,t)+ε2R2(x,y,t)

=eσT4
0 (x,y,t)+(1−e)

∫

Γc
R0(x,t)F(y,s)ds

+ε(4eσT3
0 (x,y,t)T1(x,y,t)+(1−e)

∫

Γc
R1(x,s,t)F(y,s)ds)

+O(ε2), (3.12)

where s= z/ε, z denotes the macroscopic coordinate, and s the local coordinate.
From (3.12) and equating the coefficients of the same powers for ε, two equalities can

be obtained as follows:

R0(x,t)=σT4
0 (x,y,t), (3.13)

R1(x,y,t)=4eσT3
0 (x,y,t)T1(x,y,t)+(1−e)

∫

Γc
R1(x,s,t)F(y,s)ds. (3.14)

Therefore, taking into account (3.4)-(3.6) and (3.11)-(3.14), following boundary value
problems are given by:



















−
∂

∂yi

(

kij(x,y)
∂T0(x,y,t)

∂yj

)

=0, in Y∗,

−vikij(x,y)
∂T0(x,y,t)

∂yj
=0, y∈Γc,

(3.15)
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−
∂

∂yi

(

kij(x,y)
∂T1(x,y,t)

∂yj

)

=
∂

∂yi

(

kij(x,y)
∂T0(x,y,t)

∂xj

)

+
∂

∂xi

(

kij(x,y)
∂T0(x,y,t)

∂yj

)

, in Y∗,

−vikij(x,y)
(∂T1(x,y,t)

∂yj
+

∂T0(x,y,t)

∂xj

)

= eσT4
0 (x,y,t)−e

∫

Γc
R0(x,t)F(y,s)ds, y∈Γc,

(3.16)























































∂T0(x,y,t)

∂t
−

∂

∂yi

(

kij(x,y)
∂T2(x,y,t)

∂yj

)

= f (x,t)+
∂

∂yi

(

kij(x,y)
∂T1(x,y,t)

∂xj

)

+
∂

∂xi

(

kij(x,y)
∂T0(x,y,t)

∂xj

)

+
∂

∂xi

(

kij(x,y)
∂T1(x,y,t)

∂yj

)

, in Y∗,

−vi

(

kij(x,y)
∂T2(x,y,t)

∂yj
+kij(x,y)

∂T1(x,y,t)

∂xj

)

=4eσT3
0 (x,y,t)T1(x,y,t)−e

∫

Γc
R1(x,s,t)F(y,s)ds, y∈Γc,

(3.17)

where Γc is the surface boundary of the cavities in Y∗, and Y∗ is the solid part of Y.

It can be easily found from (3.13) and (3.15) that T0(x,y,t) is only dependent on macro-
scopic variable x.

Thus, after some simplification, (3.16) can be rewritten as



































−
∂

∂yi

(

kij(x,y)
∂T1(x,y,t)

∂yj

)

=
∂

∂yi

(

kij(x,y)
∂T0(x,t)

∂xj

)

, in Y∗,

−vikij(x,y)
(∂T1(x,y,t)

∂yj
+

∂T0(x,t)

∂xj

)

= eσT4
0 (x,t)−e

∫

Γc
R0(x,t)F(y,s)ds, y∈Γc.

(3.18)

Further, owing to
∫

Γc F(y,s)ds=1, it is easy to get that

eσT4
0 (x,t)−e

∫

Γc
R0(x,t)F(y,s)ds=0. (3.19)

Then, the solution of (3.18) can be defined the following form

T1(x,y,t)=Nα1
(x,y)

∂T0

∂xα1

, α1=1,2,3. (3.20)
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Combining (3.18)-(3.20), the auxiliary functions Nα1
(x,y) (α1 = 1,2,3) defined on 1-

normalized cell Y∗ satisfy the problems given by



























∂

∂yi

(

kij(x,y)
∂Nα1

(x,y)

∂yj

)

=−
∂kiα1

(x,y)

∂yi
, in Y∗,

−vi

(

kij(x,y)
∂Nα1

(x,y)

∂yj
+kiα1

(x,y)
)

=0, y∈Γc,

Nα1
(x,y) is Y-periodic.

(3.21)

Similarly to Lemma 2.2 in Ref. [16], it is proved that problems (3.21) have a unique solu-
tion.

By analogy, by virtue of (3.11) and (3.20), (3.17) can be rewritten as



























































∂T0(x,t)

∂t
−

∂

∂yi

(

kij(x,y)
∂T2(x,y,t)

∂yj

)

=
∂

∂yi
(kij(x,y)Nα1

(x,y))
∂2T0

∂xj∂xα1

+kij(x,y)
∂2T0

∂xi∂xj
+kij(x,y)

∂Nα1
(x,y)

∂yj

∂2T0

∂xi∂xα1

+ f (x,t), in Y∗,

−vi

(

kij(x,y)
∂T2(x,y,t)

∂yj
+kij(x,y)Nα1

(x,y)
∂2T0

∂xj∂xα1

)

=4eσT3
0 (x,t)Nα1

(x,y)
∂T0

∂xα1

−e
∫

Γc
R1(x,s,t)F(y,s)ds, y∈Γc.

(3.22)

Also, taking into account equality (3.14), we have

R1(x,y,t)=4eσT3
0 (x,y,t)T1(x,y,t)+(1−e)

∫

Γc
R1(x,s,t)F(y,s)ds. (3.23)

After integrating on both sides of the equation with respect to y, (3.23) can be rewritten
as

∫

Γc
R1(x,y,t)dy=

∫

Γc
4eσT3

0 (x,t)T1(x,y,t)dy+(1−e)
∫

Γc

∫

Γc
R1(x,s,t)F(y,s)dsdy. (3.24)

Then, taking the property
∫

Γc F(s,y)dy=1 yields the equality

∫

Γc
4σT3

0 (x,t)T1(x,y,t)dy=
∫

Γc
R1(x,y,t)dy. (3.25)

Thus, we obtain the following results

∫

Γc

(

4eσT3
0 (x,t)T1(x,y,t)−e

∫

Γc
R1(x,s,t)F(y,s)ds

)

dy=0. (3.26)
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By an integral average over Y and combining (3.22)-(3.26), the homogenized equa-
tions associated with (2.3) are obtained as:







































|Y∗|

|Y|

∂T0(x,t)

∂t
−

∂

∂xi

(

k̂ij(x)
∂T0(x,t)

∂xj

)

=
|Y∗|

|Y|
f (x,t), (x,t)∈Ω×(0,t∗),

T0(x,t)= T̄(x,t), (x,t)∈Γ×(0,t∗),

T0(x,0)=Tin(x), x∈Ω,

(3.27)

where

k̂ij(x)=
1

|Y|

∫

Y∗

(

kip(x,y)
∂Nj(x,y)

∂yp
+kij(x,y)

)

dy, (3.28)

|Y| denotes the Lebesgue measure of Y. According to the Ref. [2], it can be proved that
k̂ij(x) is symmetric, bounded and positive definite for any fixed macroscopic variable x.

Remark 3.1. From the conclusions presented in Refs. [15, 16], it is easy to prove that the
homogenized problems (3.27) have the unique solution T0(x,t).

Meanwhile, combining (3.14) and (3.20), one obtains that

R1(x,y,t)=4eσT3
0 (x,t)Nα1

(x,y)
∂T0

∂xα1

+(1−e)
∫

Γc
R1(x,s,t)F(y,s)ds. (3.29)

Similarly to (3.20), the solution of R1(x,y,t) can be defined in the following form

R1(x,y,t)=Mα1
(x,y)T3

0 (x,t)
∂T0

∂xα1

. (3.30)

And the auxiliary function Mα1
(x,y) satisfies the equality

Mα1
(x,y)=4eσNα1

(x,y)+(1−e)
∫

Γc
Mα1

(x,s)F(y,s)ds. (3.31)

Mα1
(x,y) can be uniquely determined, see Refs. [13, 15] for details.

3.2 Second-order multiscale approximate solutions

Further, f (x,t)can be substituted by (3.27), to satisfy (3.22), we seek a reasonable expres-
sion for T2(x,y,t)

T2(x,y,t)=Nα1α2(x,y)
∂2T0

∂xα1
∂xα2

+Bα1
(x,y)

∂T0

∂xα1

+Cα1
(x,y)T3

0

∂T0

∂xα1

,

where T0(x,t) is the homogenization solution on Ω. Nα1α2(x,y), Bα1
(x,y) and Cα1

(x,y)
(α1,α2=1,2,3) are the local functions defined on Y∗. One can define them as follows:
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Nα1α2(x,y) is the solution of the following problem:















































∂

∂yi

(

kij(x,y)
∂Nα1α2(x,y)

∂yj

)

= k̄α1α2(x)−
∂

∂yi
(kiα2

(x,y)Nα1
(x,y))

−kα1α2(x,y)−kα2 j(x,y)
∂Nα1

(x,y)

∂yj
, in Y∗,

−vi

(

kij(x,y)
∂Nα1α2(x,y)

∂yj
+kiα2

(x,y)Nα1
(x,y)

)

=0, y∈Γc,

Nα1α2(x,y) is Y-periodic;

(3.32)

Bα1
(x,y) is the solution of the following problem:















































∂

∂yi

(

kij(x,y)
∂Bα1

(x,y)

∂yj

)

=
∂k̄iα1

(x)

∂xi
−

∂kiα1
(x,y)

∂xi

−
∂

∂xi

(

kij(x,y)
∂Nα1

(x,y)

∂yj

)

−
∂

∂yi

(

kij(x,y)
∂Nα1

(x,y)

∂xj

)

, in Y∗,

−vi

(

kij(x,y)
∂Bα1

(x,y)

∂yj
+kij(x,y)

∂Nα1
(x,y)

∂xj

)

=0, y∈Γc,

Bα1
(x,y) is Y-periodic;

(3.33)

Cα1
(x,y) is the solution of the following problem:











































∂

∂yi

(

kij(x,y)
∂Cα1

(x,y)

∂yj

)

=0, in Y∗,

−vi

(

kij(x,y)
∂Cα1

(x,y)

∂yj

)

=4eσNα1
(x,y)−e

∫

Γc
Mα1

(x,s)F(y,s)ds, y∈Γc,

Cα1
(x,y) is Y-periodic,

(3.34)

where k̄α1α2= |Y|
|Y∗|

k̂α1α2 .

Remark 3.2. Following the idea of Refs. [27–29] and based on the assumptions (B1)-(B4),
the cell problems (3.32)-(3.34) have the unique solution for any fixed macroscopic position
x.

In summary, the multiscale approximate solutions of problems (2.3) are defined as
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follows:

Tε
1(x,t)=T0+εNα1

(x,y)
∂T0

∂xα1

,

Tε
2(x,t)=T0+εNα1

(x,y)
∂T0

∂xα1

(3.35)

+ε2

(

Nα1α2(x,y)
∂2T0

∂xα1
∂xα2

+Bα1
(x,y)

∂T0

∂xα1

+Cα1
(x,y)T3

0

∂T0

∂xα1

)

,

where Tε
1(x,t) and Tε

2(x,t) are called the first-order and the second-order multiscale ap-
proximate solutions, respectively. It is worth noting that the expansions (3.35) are dif-
ferent from the traditional forms given by [14, 17], the differences are that the correction
terms Nα1

(x,y), Nα1α2(x,y), Bα1
(x,y) and Cα1

(x,y) are constructed into the asymptotic ex-
pansions depending on the macroscopic variable x due to quasi-periodic effect of the
materials.

To sum up, one obtains the following theorem.

Theorem 3.1. Temperature fields for the heat conduction-radiation problems (2.3) of porous ma-
terials with quasi-periodic structure have the multiscale asymptotic expansions as follows:

Tε(x,t)=T0+εNα1
(x,y)

∂T0

∂xα1

+ε2

(

Nα1α2(x,y)
∂2T0

∂xα1
∂xα2

+Bα1
(x,y)

∂T0

∂xα1

+Cα1
(x,y)T3

0

∂T0

∂xα1

)

+ε3P1(ε,x,y,t), (3.36)

where T0 is the solution of the homogenized (3.27) with the parameters (3.28). P1(ε,x,y,t) is
the asymptotic expansion function depending on the two-scale variables x and y. Nα1

(x,y),
Nα1α2(x,y), Bα1

(x,y) and Cα1
(x,y) are the local solutions satisfying (3.21) and (3.32)-(3.34),

respectively.

Finally, the approximate temperature gradients can be evaluated by:

∂Tε
2(x,t)

∂xi
=

∂T0

∂xi
+

∂Nα1
(x,y)

∂yi

∂T0

∂xα1

+ε
∂

∂xi

(

Nα1
(x,y)

∂T0

∂xα1

)

+ε
∂Nα1α2(x,y)

∂yi

∂2T0

∂xα1
∂xα2

+ε2 ∂

∂xi

(

Nα1α2(x,y)
∂2T0

∂xα1
∂xα2

)

+ε
∂Bα1

(x,y)

∂yi

∂T0

∂xα1

+ε2 ∂

∂xi

(

Bα1
(x,y)

∂T0

∂xα1

)

+ε
∂Cα1

(x,y)

∂yi
T3

0

∂T0

∂xα1

+ε2 ∂

∂xi

(

Cα1
(x,y)T3

0

∂T0

∂xα1

)

. (3.37)



216 Z. Yang et al. / Commun. Comput. Phys., 24 (2018), pp. 204-233

4 Main convergence theorem and its proof

In this section, the detailed proofs of the explicit convergence order for the second-order
multiscale methods in integral sense are given. In addition, in order to get the error
estimates of proposed methods, a lemma that will be useful in the sequel is presented at
first.

Lemma 4.1. let g(x,y)∈ L̂(Ω×Rn),
∫

Y
g(x,y)dy=0, ∀x∈Ω, then

∣

∣

∣

∣

∫

Ω
uvg(x,

x

ε
)dx

∣

∣

∣

∣

6Cε‖u‖H1(Ω)‖v‖H1(Ω)

∀u,v∈H1(Ω), C>0 and is independent ε,u,v.

See the proof in Lemma 1.6 of Ref. [2].
Then, we have the following theorem.

Theorem 4.1. Assume that Ωε ⊂R3 is a bounded Lipschitz domain and ∂Ω∈C4. Let Tε(x,t)
be the solution of (2.3), T0(x,t) is the solution of homogenized equation of (3.27). Tε

2(x,t) is
the approximate solution stated in (3.35). Under assumptions (B1)-(B4), if f (x,t)∈H2,1(Ω×
[0,t∗)), Tin(x)∈H4(Ω), we obtain the following error estimates:

sup
06t6t∗

∫

Ωε
(Tε(x,t)−Tε

2(x,t))2
dx +

∫ t∗

0
‖Tε(x,t)−Tε

2(x,t)‖2
H1(Ωε)dt6Cε,

C is positive constant independent of ε.

Proof. Substituting Tε(x,t)−Tε
2(x,t) into (2.3), we obtain that

Lε(Tε(x,t)−Tε
2(x,t))=

∂Tε(x,t)

∂t
−

∂

∂xi

(

kij(x,y)
∂Tε(x,t)

∂xj

)

−
∂

∂t

(

T0+εNα1
(x,y)

∂T0

∂xα1

+ε2
(

Nα1α2(x,y)
∂2T0

∂xα1
∂xα2

+Bα1
(x,y)

∂T0

∂xα1

+Cα1
(x,y)T3

0

∂T0

∂xα1

)

)

+
∂

∂xi

(

kij(x,y)
∂

∂xj

(

T0+εNα1
(x,y)

∂T0

∂xα1

+ε2
(

Nα1α2(x,y)
∂2T0

∂xα1
∂xα2

+Bα1
(x,y)

∂T0

∂xα1

+Cα1
(x,y)T3

0

∂T0

∂xα1

)

)

)

=G0+εF0+ε2 ∂

∂xi
Fi, (4.1)

where

Lε=
∂

∂t
−

∂

∂xi

(

kij(x,y)
∂

∂xj

)

, (4.2)

G0=
∂

∂xi

(

k̂ij(x)−kij(x,y)−kip(x,y)
∂Nj(x,y)

∂yp

) ∂T0

∂xα1

, (4.3)
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F0=
∂

∂xi

(

kij(x,y)
∂

∂xj

(

Nα1
(x,y)

∂T0

∂xα1

)

)

+
∂

∂xi

(

kij(x,y)
∂Nα1α2(x,y)

∂yj

∂2T0

∂xα1
∂xα2

)

+
∂

∂yi

(

kij(x,y)
∂

∂xj

(

Nα1α2(x,y)
∂2T0

∂xα1
∂xα2

)

)

+
∂

∂xi

(

kij(x,y)
∂Bα1

(x,y)

∂yj

∂T0

∂xα1

)

+
∂

∂yi

(

kij(x,y)
∂

∂xj

(

Bα1
(x,y)

∂T0

∂xα1

)

)

+
∂

∂xi

(

kij(x,y)
∂Cα1

(x,y)

∂yj
T3

0

∂T0

∂xα1

)

+
∂

∂yi

(

kij(x,y)
∂

∂xj

(

Cα1
(x,y)T3

0

∂T0

∂xα1

)

)

−
∂

∂t

(

Nα1
(x,y)

∂T0

∂xα1

+ε
(

Nα1α2(x,y)
∂2T0

∂xα1
∂xα2

+Bα1
(x,y)

∂T0

∂xα1

+Cα1
(x,y)T3

0

∂T0

∂xα1

)

)

, (4.4)

Fi=kij(x,y)
∂

∂xj

(

Cα1
(x,y)T3

0

∂T0

∂xα1

)

+kij(x,y)
∂

∂xj

(

Bα1
(x,y)

∂T0

∂xα1

)

+kij(x,y)
∂

∂xj

(

Nα1α2(x,y)
∂2T0

∂xα1
∂xα2

)

.

Let
‖G0‖∗=sup

{
∣

∣

∣
(G0,v)L2(Ωε)

∣

∣

∣
: v∈H1

0 (Ω
ε),‖v‖H1

0 (Ω
ε)=1

}

. (4.5)

Then, we have that

(G0,v)L2(Ωε)=
∫

Ωε
G0vdx

=
∫

Ωε

(

k̂ij(x)−kij(x,y)−kip(x,y)
∂Nj(x,y)

∂yp

) ∂

∂xi

( ∂T0

∂xα1

v
)

dx. (4.6)

Also, one can define the following equality given by

g(x,y)= k̂ij(x)−kij(x,y)−kip(x,y)
∂Nj(x,y)

∂yp
. (4.7)

Thanks to
∫

Y g(x,y)dy=0 and Lemma 4.1, one obtains that
∣

∣

∣

∣

∫

Ωε
g
(

x,
x

ε

) ∂

∂xi

(∂T0

∂xα
v
)

dx

∣

∣

∣

∣

≤Cε‖T0‖H2(Ω)‖v‖H1(Ωε). (4.8)

Obviously, combining (4.6) and (4.8), we obtain

‖G0‖∗≤Cε‖T0‖H2(Ω). (4.9)

For (x,t)∈Γ×(0,t∗), this leads to

Tε(x,t)−Tε
2(x,t)=−εNα1

(x,y)
∂T0

∂xα1

−ε2Nα1α2(x,y)
∂2T0

∂xα1
∂xα2

−ε2Bα1
(x,y)

∂T0

∂xα1

−ε2Cα1
(x,y)T3

0

∂T0

∂xα1

= ϕε(x,t). (4.10)
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Following the lines of the proof in Theorem 1.2 of (Ref. [2], Chap. II), for any fixed t ∈
(0,t∗), we obtain

‖ϕε(x,t)‖H1/2(Γ)≤Cε1/2‖T0‖H3(Ω). (4.11)

where C is a constant independent of ε.

Also for the initial conditions, it follows that

Tε(x,0)−Tε
2(x,0)=Tin(x)−Tin(x)−εNα1

(x,y)
∂T0

∂xα1

∣

∣

∣

t=0
−ε2(Nα1α2(x,y)

∂2T0

∂xα1
∂xα2

+Bα1
(x,y)

∂T0

∂xα1

+Cα1
(x,y)T3

0

∂T0

∂xα1

=εϕ0(x,y), ‖ϕ0(x,y)‖L2(Ωε)≤C. (4.12)

On the boundary Γc
ε,m, let y=x/ε, s=z/ε, and for the sufficiently smooth homogenized

solutions T0(x,t), we have

−vik
ε
ij(x)

(∂Tε(x,t)

∂xj
−

∂Tε
2(x,t)

∂xj

)

=σ

(

T0+εNα1
(x,y)

∂T0

∂xα1

+ε2Nα1α2(x,y)
∂2T0

∂xα1
∂xα2

+Bα1
(x,y)

∂T0

∂xα1

+ε2Cα1
(x,y)T3

0

∂T0

∂xα1

+ε3P1(ε,x,y,t)

)4

−σ
∫

Γc

(

T0+εNα1
(x,s)

∂T0

∂xα1

+ε2Nα1α2(x,s)
∂2T0

∂xα1
∂xα2

+ε2Bα1
(x,s)

∂T0

∂xα1

+ε2Cα1
(x,s)T3

0

∂T0

∂xα1

+ε3P1(ε,x,s,t)
)4

F(y,s)ds

+vikij(x,y)

(

∂T0

∂xj
+

∂Nα1
(x,y)

∂yj

∂T0

∂xα1

+εNα1
(x,y)

∂2T0

∂xj∂xα1

+ε
∂Nα1α2(x,y)

∂yj

∂2T0

∂xα1
∂xα2

+ε
∂Bα1

(x,y)

∂yj

∂T0

∂xα1

+ε2Bα1
(x,y)

∂2T0

∂xj∂xα1

+ε2Nα1α2(x,y)
∂3T0

∂xj∂xα1
∂xα2

+ε
∂Cα1

(x,y)

∂yj
T3

0

∂T0

∂xα1

+ε2Cα1
(x,y)

∂

∂xj

(

T3
0

∂T0

∂xα1

)

)

. (4.13)

By virtue of the boundary conditions on Γc for Nα1
(x,y), Nα1α2(x,y), Bα1

(x,y), Cα1
(x,y)

and the regularity of T0(x,t) it follows that

−vik
ε
ij(x)

(∂Tε(x,t)

∂xj
−

∂Tε
2(x,t)

∂xj

)

= ε2F, (4.14)
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where

F=vikij(x,y)

(

Nα1α2(x,y)
∂3T0

∂xj∂xα1
∂xα2

+Bα1
(x,y)

∂2T0

∂xj∂xα1

+Cα1
(x,y)

∂

∂xj

(

T3
0

∂T0

∂xα1

)

)

+4T3
0 σ

(

Nα1α2(x,y)
∂2T0

∂xα1
∂xα2

+Bα1
(x,y)

∂T0

∂xα1

+Cα1
(x,y)T3

0

∂T0

∂xα1

)

−
∫

Γc
4T3

0 σ
(

Nα1α2(x,s)
∂2T0

∂xα1
∂xα2

+Bα1
(x,s)

∂T0

∂xα1

+Cα1
(x,s)T3

0

∂T0

∂xα1

)

F(y,s)ds

+6T2
0 σ

(

Nα1
(x,y)

∂T0

∂xα1

)2
−
∫

Γc
6T2

0 σ
(

Nα1
(x,s)

∂T0

∂xα1

)2

F(y,s)ds+O(ε). (4.15)

Thus, combining (4.1), (4.9), (4.10), (4.12) and (4.14), we conclude that Tε(x,t)−Tε
2(x,t)

is a weak solution of the following initial-boundary value problems















































Lε(Tε(x,t)−Tε
2(x,t))

=G0+εF0+ε2 ∂

∂xi
Fi, (x,t)∈Ωε×(0,t∗),

Tε(x,t)−Tε
2(x,t)= ϕε(x,t), (x,t)∈Γ×(0,t∗),

Tε(x,0)−Tε
2(x,0)= εϕ0(x,y) , x∈Ωε,

−vik
ε
ij(x)

∂(Tε(x,t)−Tε
2(x,t))

∂xj
= ε2F, (x,t)∈Γc

ε×(0,t∗).

(4.16)

Noting, after integration and summation over all cells, we obtain a remainder term given
by

m(ε)

∑
m=1

∣

∣Γc
ε,m

∣

∣O(ε2)=O(ε−d)O(εd−1)O(ε2)=O(ε), (4.17)

where d is 2 or 3 in actual applications. Then, from the regularity of Nα1
(x,y), Nα1α2(x,y),

Bα1
(x,y), Cα1

(x,y), T0(x,t), and using Gronwall’s inequality, we complete the proof of
Theorem 4.1.

5 Multiscale finite element algorithms

In this section, we give the detailed algorithm procedure to derive the second-order mul-
tiscale finite element formulations of the heat conduction-radiation problems (2.3), and
investigate the multiscale behavior of the coupled problems.

5.1 Multiscale finite element (FE) formulation

1) FE formulations of auxiliary cell functions and homogenized parameters.
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The FE solutions of auxiliary cell functions Nh
α1
(x,y) can be obtained by solving the

following FE virtual work equation on unit cell Y∗

∫

Y∗
kij(x,y)

∂Nh
α1
(x,y)

∂yj

∂v

∂yi
dy=

∫

Y∗
−kiα1

(x,y)
∂v

∂yi
dy, ∀v∈Sh(Y∗), (5.1)

where Sh(Y∗)⊆H1
0(Y

∗) denotes the FE space of 1-square Y∗, Y∗ is partitioned into FE set
Sh of finite elements, h is the mesh size, as shown in Fig. 2(a). Then, the FE approximation
k̂ij(x) of homogenized coefficients can be obtained as follows:

k̂h
ij(x)=

1

|Y|

∫

Y∗

(

kip(x,y)
∂Nh

j (x,y)

∂yp
+kij(x,y)

)

dy. (5.2)

Similarly to (5.1) and (5.2), Nh
α1α2

(x,y), Bh
α1
(x,y), Mh

α1
(x,y) and Ch

α1
(x,y) can be given by

solving the following equations, successively,

∫

Y∗
kij(x,y)

∂Nh
α1α2

(x,y)

∂yj

∂v

∂yi
dy

=
∫

Y∗

(

kα1α2(x,y)− k̄h
α1α2

(x)+kα2 j(x,y)
∂Nh

α1
(x,y)

∂yj

)

vdy

−
∫

Y∗
kiα2

(x,y)Nh
α1
(x,y)

∂v

∂yi
dy, ∀v∈Sh(Y∗), (5.3)

∫

Y∗
kij(x,y)

∂Bh
α1
(x,y)

∂yj

∂v

∂yi
dy

=
∫

Y∗

(

∂kiα1
(x,y)

∂xi
−

∂k̄iα1
(x)

∂xi
+

∂

∂xi

(

kij(x,y)
∂Nα1

(x,y)

∂yj

)

)

vdy

−
∫

Y∗
kij(x,y)

∂Nα1
(x,y)

∂xj

∂v

∂yi
dy, ∀v∈Sh(Y∗), (5.4)

Mh
α1
(x,y)=4eσNh

α1
(x,y)+(1−e)

∫

Γc
Mh

α1
(x,s)F(y,s)ds, (5.5)

∫

Y∗
kij(x,y)

∂Ch
α1
(x,y)

∂yj

∂v

∂yi
dy

=−
∫

Γc
(4eσNh

α1
(x,y)−e

∫

Γc
Mh

α1
(x,s)F(y,s)ds)vdy, ∀v∈Sh(Y∗). (5.6)

2) FE formulations of homogenized problems.

The FE solutions of the homogenized problems (3.27) are evaluated by following FE
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(a) (b)

Figure 2: (a) The meshes of unit cell; (b) the meshes of the homogenized domain Ω.

virtual work equations together with the homogenized coefficients (3.28) on Ω

∫

Ω

|Y∗|

|Y|

∂Th0
0 (x,t)

∂t
vdx+

∫

Ω
k̂h

ij(x)
∂Th0

0 (x,t)

∂xi

∂v

∂xj
dx

=
∫

Ω

|Y∗|

|Y|
f (x,t)vdx, ∀v∈Sh0(Ω), (5.7)

where Sh0(Ω) denotes the FE space with mesh size h0 on the homogenized domain Ω, as
shown in Fig. 2(b). The backward Euler full discrete format proposed in Refs. [17, 32] is
used for the discretization.

3) Multiscale finite element solutions.

From (3.35) and (5.1)-(5.7), the multiscale finite element solutions based on whole
structure Ωε can be given by

Tε
1,h,h0

(x,t)=Th0
0 +εNh

α1
(x,y)

∂Th0
0

∂xα1

,

Tε
2,h,h0

(x,t)=Th0
0 +εNh

α1
(x,y)

∂Th0
0

∂xα1

(5.8)

+ε2
(

Nh
α1α2

(x,y)
∂2Th0

0

∂xα1
∂xα2

+Ch
α1
(x,y)(Th0

0 )3 ∂Th0
0

∂xα1

)

.

5.2 FE algorithm procedure for second-order multiscale method

The algorithm procedure of the second-order multiscale method for predicting the ther-
mal properties of the original problems (2.3) is presented as follows:
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1) Verify and generate the distribution of cavities in unit cell, and the geometric model
of the structure. Further, partition Y∗ into finite element meshes set.

2) Compute the auxiliary cell functions Nα1
(x,y) (α1 = 1,2,3) on the reference cell by

solving the cell functions problems (5.1) with finite element method from Section 5.1.
Then, the homogenized coefficient k̂ij(x) (i, j = 1,2,3) can be evaluated by the formula
(5.2).

3) Calculate the homogenized solutions T0(x,t) by solving problems (5.7) on global
structure Ω in a coarse mesh and in a large time step, and the standard Backward Euler
full discrete format is employed to solve the modified homogenized problems.

4) Solve Nα1α2(x,y), Bα1
(x,y), Mα1

(x,y) and Cα1
(x,y) (α1,α2=1,2,3) by computing the

auxiliary cell problems (5.3)-(5.6) with finite element method (FEM) based on reference
cell Y∗, respectively.

5) Compute the spatial variable derivatives ∂T0
∂xα1

and ∂2T0
∂xα1

∂xα2
(α1,α2=1,2,3) by the av-

erage technique on relative elements (see Refs. [29, 33]).

6) Use the auxiliary cell functions from steps 2 and 4 to evaluate the multiscale tem-
perature and the temperature gradient fields according to formulas (3.35) and (3.37), re-
spectively.

6 Numerical examples and discussions

6.1 Validation of the second-order multiscale method

In this subsection, we present some examples to validate the second-order multiscale
method proposed previously. Take into account the mixed boundary value problems
(2.3), where Ωε consist of whole cells that are illustrated in Fig. 3(a), and the unit cell Y∗

is illustrated in Fig. 3(b). The boundary temperatures in the x3-direction are set as T̄1=0K,
T̄2=0K and the time step is ∆t=0.02. σ= 5.669996×10−8W/m2K4, and the radius of the
cavity in Y∗ is 0.25, respectively. The initial temperature Tin(x) is set to 0.0K.

Since it is too hard to find the analytical solutions of the original problems (2.3), we
have to take Tε(x,t) to be its FE solution TFE in the extremely fine meshes. The linear
tetrahedral elements are applied for the problems of (2.3) using fine meshes and that of
the corresponding homogenized equations by a coarse mesh. Table 1 shows the numbers
of tetrahedrons and nodes.

Table 1: Comparison of computational cost.

Original equation Unit cell Homogenized equation

Elements 727125 5817 93750

Nodes 168875 1351 17576



Z. Yang et al. / Commun. Comput. Phys., 24 (2018), pp. 204-233 223

(a) (b)

Figure 3: (a) Domain Ωε =[0,0.25]3; (b) Unit cell Y∗=[0,1]3.

The following cases are investigated:

Case1: e=1.0, ω(x)=1+ 1
5(x1+x2+x3), kij =10δijW/m K, f (x,t)=105J

/

m3s;

Case2: e=0.2, ω(x)=1+ 1
5(x1+x2+x3), kij =10δijW/m K, f (x,t)=105J

/

m3s;

Case3: e=1.0, ω(x)=1+x1+x2+x3, kij =10δijW/m K, f (x,t)=105J
/

m3s;

Case4: e=1.0, ω(x)=1+ 1
5(x2

1+x2
2+x2

3), kij =10δijW/m K, f (x,t)=105J
/

m3s,

where δij (i, j=1,2,3) is the Kronecker delta, and if i= j, δij=1, or δij=0. kij(x, x
ε )=ω(x)kij

(i, j = 1,2,3). It should be emphasized that Th0
0 (x,t) is the FE solution of the homoge-

nized equations (5.7), Tε
1,h,h0

(x,t) and Tε
2,h,h0

(x,t) denote the FE solution of first-order and
the second-order multiscale methods based on (5.8). In addition, we give the following
notations

‖v‖L2 =
(

∫

Ωε
|v|2dx

)1/2
, |v|H1 =

(

∫

Ωε
(|∇v|2)dx

)1/2
.

The relative numerical errors of the homogenized methods, first-order multiscale and
second-order multiscale methods in L2-norm and H1-norm for the examples are listed in

Tables 2 and 3, respectively. Also, we define that error0 = TFE−Th0
0 (x,t), error1 = TFE−

Tε
1,h,h0

(x,t) and error2 =TFE−Tε
2,h,h0

(x,t) to simplify the problems.

Figs. 4(a)-(d) display the computational results for Th0
0 (x,t), Tε

1,h,h0
(x,t), Tε

2,h,h0
(x,t) and

TFE at the intersection x3=0.15 in Case 1 and at time t=0.2.

Figs. 5(a)-(d) display the computational results for Th0
0 (x,t), Tε

1,h,h0
(x,t), Tε

2,h,h0
(x,t) and

TFE at the intersection x3=0.15 in Case 4 and at time t=0.2.
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Table 2: Comparison with computing results of norm L2 and at time t=0.2.

‖error0‖L2

/

‖TFE‖L2 ‖error1‖L2

/

‖TFE‖L2 ‖error2‖L2

/

‖TFE‖L2

Case1 0.01135923 0.003123321 0.002132161

Case2 0.01164171 0.004087159 0.003306059

Case3 0.01135869 0.003120886 0.002132407

Case4 0.01135845 0.003122768 0.002131599

Table 3: Comparison with computing results of semi-norm H1 and at time t=0.2.

|error0 |H1

/

|TFE|H1 |error1 |H1

/

|TFE|H1 |error2|H1

/

|TFE|H1

Case1 0.17172187 0.06500094 0.063661502

Case2 0.17170429 0.06530554 0.063959088

Case3 0.17159739 0.06504279 0.063744252

Case4 0.17171492 0.064946702 0.063611723
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Figure 4: Temperature fields in the cross section x3=0.15 and at time t = 0.2, Case 1; (a) Th0
0 (x,t); (b)

Tε
1,h,h0

(x,t); (c) Tε
2,h,h0

(x,t); (d) TFE.
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Figure 5: Temperature fields in the cross section x3 = 0.15 and at time t = 0.2, Case 4; (a) Th0
0 (x,t); (b)

Tε
1,h,h0

(x,t); (c) Tε
2,h,h0

(x,t); (d) TFE.

Figs. 6(a) and (b) illustrate the multiscale finite element results for temperature gradi-

ents ∂Tε(x,t)
∂x1

, ∂Tε(x,t)
∂x2

along the line of x1= x2, x3=0.15 in Case 1 and at time t=0.2.

Figs. 7(a) and (b) illustrate the multiscale finite element results for temperature gradi-

ents
∂Tε(x,t)

∂x1
,

∂Tε(x,t)
∂x2

along the line of x1= x2, x3=0.15 in Case 3 and at time t=0.2.

The relative errors of multiscale approximate solutions are shown clearly in Figs. 8
and 9 with time t for the Cases 1 and 4, where error0L2, error1L2, error2L2, error0H1, er-
ror1H1, and error2H1 denote ‖error0‖L2

/

‖TFE‖L2 , ‖error1‖L2

/

‖TFE‖L2 , ‖error2‖L2

/

‖TFE‖L2 ,
|error0|H1

/

|TFE|H1 , |error1 |H1

/

|TFE|H1 , |error2 |H1

/

|TFE|H1 , respectively.

By analyzing the numerical results shown in Figs. 4-7, Tables 2 and 3, we found that
the homogenized solutions and the first-order solutions are not sufficient to capture the
local fluctuation behavior for such coupled problems. And only second-order multiscale
solutions can accurately catch the microscale oscillating information. Figs. 8 and 9 dis-
play the evolution of relative errors between different multiscale approximate solutions
and FE solutions computed on refined meshes. It is worth noting that the relative error
does not increase significantly with time. This shows that the multiscale method is a good
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Figure 6: Case 1; (a)
∂Tε(x,t)

∂x1
; (b)

∂Tε(x,t)
∂x2

along the line of x1=x2, x3 =0.15 and at time t=0.2.

way, in some cases, to deal with a long-time problems. Obviously, the second-order mul-
tiscale method proposed in this paper is effective for computing the coupling problems
of porous materials with quasi-periodic structures.

In order to verify the influence of radiation effect on the temperature fields, we carry
out a numerical example with different boundary temperatures.

The macrostructure Ωε of Fig. 3(a) is chosen in this example, and the emissivity is
e= 1. The internal heat source f (x,t) is set to 10000J/m3s, kij = 0.5δijW/m, and ω(x)=

1+ 1
5(x1+x2+x3). Figs. 10(a)-(c) show the computing results of the temperature fields

Tε(x,t) for different boundary temperatures i.e., T̄1 = 100K, T̄2 = 1000K; T̄1 = 500K, T̄2 =
1200K; T̄1=800K, T̄2=1500K, and along the line of x1=0.15, x3=0.15 and at time t=0.2.

As displayed in the Fig. 10, the second-order multiscale approximation is adequately
effective to capture the microscopic oscillating behavior of the coupled solutions. Also,
the second order expansions developed in this paper can acquire more detailed informa-
tion about the radiation effect of the cavities in the porous materials.
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Figure 7: Case 3; (a)
∂Tε(x,t)
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along the line of x1=x2, x3 =0.15 and at time t=0.2.
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Figure 8: Case 1; (a) the evolution of L2 relative errors with t; (b) the evolution of H1 relative errors with t.
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Figure 9: Case 4; (a) the evolution of L2 relative errors with t; (b) the evolution of H1 relative errors with t.
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Figure 10: Temperature fields Tε(x,t) for different boundary temperatures along the line of x1=0.15, x3=0.15
and at time t=0.2: (a) T̄1 =100K, T̄2=1000K; (b) T̄1=500K, T̄2 =1200K; (c) T̄1=800K, T̄2 =1500K.
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6.2 Porous materials with a large number of pores

In practical engineering problems, porous materials are composed of a large number of
pores. Thus, in this subsection, the porous materials described in Fig. 11 which consist
of 200000 pores with a diameter of d=1.25mm are used to demonstrate the effectiveness
of the second-order multiscale method. All the pores are also generated by rigid wall
constraints in a rectangular region. The thermal conductivity is 10W/mK, ω(x) = 1+
1
5(x1+x2+x3) and boundary conditions are the same as that listed in Section 6.1. The
internal heat source is f (x,t)=105J

/

m3s.

Figure 11: Porous materials with a large number of pores. Ωε =[0,0.25m]2× [0,0.2m].

Figs. 12(a)-(c) illustrate the partial numerical results for ∂Tε(x,t)
∂x along the line of x1=x2,

x3=0.15 and at time t=0.2.

Both the second-order multiscale methods and the direct numerical simulations are
carried out on the same computer (which has memory of 512GB and 16 processors with
CPU= 2.67GHz). On the aspect of the multiscale methods, it is very cheap to solve the
simulation (it takes about 1 second to finish solving the cell problems, and homogenized
problems about 7 seconds for one iteration). However, we cannot easily obtain TFE by
classical numerical method since it requires very fine meshes and a great amount of com-
putation time, and the convergence of FE method based on fine meshes for the nonlinear
coupled problems is also not easy.

As a result, the second-order multiscale approximate solutions developed in this
work can effectively capture the local fluctuation caused by the complicated microstruc-
ture. Besides, the second-order multiscale method is appropriate for a very small periodic
parameter ε, i.e., a large number of pores contained in the porous materials, which can
greatly save the computing memory and CPU time without loss of accuracy, and it is
very important in actual engineering problems.
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Figure 12: (a)
∂Tε(x,t)

∂x1
, (b)

∂Tε(x,t)
∂x2

and (c)
∂Tε(x,t)

∂x3
along the line of x1 = x2, x3 =0.15 and at time t=0.2.
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7 Conclusions

In this paper, the heat transfer performance of porous materials with quasi-periodic
structures is predicted by the multiscale asymptotic analysis and related numerical algo-
rithms. The second-order multiscale asymptotic expansion formulations for the coupled
problems are given, and the convergence results under appropriate assumptions of the
homogenized solutions are derived.

Finally, in the numerical examples, it is worth noting that second-order schemes are
proposed to effectively acquire local information of the coupled problems, which support
the theoretical results of this paper and demonstrate that the multiscale method proposed
in this paper is stable and efficient.
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