A Priori Error Estimates of Crank-Nicolson Finite Volume Element Method for Parabolic Optimal Control Problems
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{AAMM-5-688,
author = {Luo , XianbingChen , Yanping and Huang , Yunqing},
title = {A Priori Error Estimates of Crank-Nicolson Finite Volume Element Method for Parabolic Optimal Control Problems},
journal = {Advances in Applied Mathematics and Mechanics},
year = {2013},
volume = {5},
number = {5},
pages = {688--704},
abstract = {
In this paper, the Crank-Nicolson linear finite volume element method is applied to solve the distributed optimal control problems governed by a parabolic equation. The optimal convergent order $\mathcal{O}(h^2+k^2)$ is obtained for the numerical solution in a discrete $L^2$-norm. A numerical experiment is presented to test the theoretical result.
}, issn = {2075-1354}, doi = {https://doi.org/10.4208/aamm.12-m1296}, url = {http://global-sci.org/intro/article_detail/aamm/92.html} }
TY - JOUR
T1 - A Priori Error Estimates of Crank-Nicolson Finite Volume Element Method for Parabolic Optimal Control Problems
AU - Luo , Xianbing
AU - Chen , Yanping
AU - Huang , Yunqing
JO - Advances in Applied Mathematics and Mechanics
VL - 5
SP - 688
EP - 704
PY - 2013
DA - 2013/05
SN - 5
DO - http://doi.org/10.4208/aamm.12-m1296
UR - https://global-sci.org/intro/article_detail/aamm/92.html
KW - Variational discretization, parabolic optimal control problems, finite volume element
method, distributed control, Crank-Nicolson.
AB -
In this paper, the Crank-Nicolson linear finite volume element method is applied to solve the distributed optimal control problems governed by a parabolic equation. The optimal convergent order $\mathcal{O}(h^2+k^2)$ is obtained for the numerical solution in a discrete $L^2$-norm. A numerical experiment is presented to test the theoretical result.
Luo , XianbingChen , Yanping and Huang , Yunqing. (2013). A Priori Error Estimates of Crank-Nicolson Finite Volume Element Method for Parabolic Optimal Control Problems.
Advances in Applied Mathematics and Mechanics. 5 (5).
688-704.
doi:10.4208/aamm.12-m1296
Copy to clipboard