TY - JOUR T1 - A Priori Error Estimates of Crank-Nicolson Finite Volume Element Method for Parabolic Optimal Control Problems AU - Luo , Xianbing AU - Chen , Yanping AU - Huang , Yunqing JO - Advances in Applied Mathematics and Mechanics VL - 5 SP - 688 EP - 704 PY - 2013 DA - 2013/05 SN - 5 DO - http://doi.org/10.4208/aamm.12-m1296 UR - https://global-sci.org/intro/article_detail/aamm/92.html KW - Variational discretization, parabolic optimal control problems, finite volume element method, distributed control, Crank-Nicolson. AB -
In this paper, the Crank-Nicolson linear finite volume element method is applied to solve the distributed optimal control problems governed by a parabolic equation. The optimal convergent order $\mathcal{O}(h^2+k^2)$ is obtained for the numerical solution in a discrete $L^2$-norm. A numerical experiment is presented to test the theoretical result.