This paper is devoted to exploring the mapping properties for the commutator $\mu_{Ω,\vec{b}}$ generated by multilinear Marcinkiewicz integral operators $\mu_Ω$ with a locally
integrable function $\vec{b}= (b_1,···,b_m)$ on the generalized Morrey spaces. $\mu_{Ω,\vec{b}}$ is bounded
from $L^{(p_1
,\varphi_1)} (\mathbb{R}^n
)×···×L^{(p_m,\varphi_m)} (\mathbb{R}^n)$ to $L ^{(q,\varphi)} (\mathbb{R}^n),$ where $L^{(p_i
,\varphi_i
)} (\mathbb{R}^n),$ $L^{(q,φ)} (\mathbb{R}^n)$ are
generalized Morrey spaces with certain variable growth condition, that $b_j(j=1,···,m)$ is a function in generalized Campanato spaces, which contain the BMO$(\mathbb{R}^n)$ and the
Lipschitz spaces ${\rm Lip}_α(\mathbb{R}^n) (0<α≤1)$ as special examples.