Two-Weighted Estimate for Generalized Fractional Integral and its Commutator on Generalized Fractional Morrey Spaces

Guanghui Lu*and Shuangping Tao

College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China.

Received August 11, 2022; Accepted Novermber 21, 2022 Published online December 13, 2023.

Abstract. The aim of this paper is to establish the mapping properties of generalized fractional integral I_{ρ} and its commutator $[b, I_{\rho}]$ formed by $b \in BMO(\mathbb{R}^n)$ and the I_{ρ} on generalized fractional weighted Morrey spaces $\mathcal{L}^{p,\eta,\varphi}_{\omega}(\mathbb{R}^n)$, where φ is a positive and non-decreasing function defined on $(0,\infty)$, $\eta \in (0,n)$ and $p \in [1, \frac{n}{n})$.

AMS subject classifications: 42B20, 42B35, 47B47

Key words: Generalized fractional integral, commutator, space $BMO(\mathbb{R}^n)$, two-weight, generalized fractional Morrey space.

1 Introduction

Let I_{α} be the fractional integral operator of order $\alpha \in (0, n)$, i.e., for all $x \in \mathbb{R}^{n}$, define

$$I_{\alpha}f(x):=\int_{\mathbb{R}^n}\frac{f(y)}{|x-y|^{n-\alpha}}\mathrm{d}y,$$

which, regards as the Hardy-Littlewood-Sobolev theorem (see [8, 23]), is bounded from spaces $L^p(\mathbb{R}^n)$ into spaces $L^q(\mathbb{R}^n)$, where $1 and <math>\frac{1}{q} = \frac{1}{p} - \frac{\alpha}{n}$. Since then, the boundedness of I_α on various of spaces is widely focused. For example, Adams [1] has proved that I_α is bounded on Morrey spaces $L^{p,\lambda}(\mathbb{R}^n)$ introduced by Morrey (see [17]). In 1994, Nakai has obtained the boundedness of I_α on generalized Morrey spaces $L^{p,\omega}(\mathbb{R}^n)$ in [18], where $\omega(a,r) = \omega(I) = \int_{I(a,r)} \omega(x) dx$ and I = I(a,r) is a cube $\{x \in \mathbb{R}^n : |x_i - a_i| \le \frac{r}{2}, i = 1, \dots, n\}$. The further development about the operator I_α , the readers can see [4,12,15,16,26,29] and the corresponding references.

^{*}Corresponding author. Email address: lghwmm1989@126.com (Lu G), taosp@nwnu.edu.cn (Tao S)

To solve the $L^2(\mathbb{R}^n)$ -boundedness of the Cauchy type integral along the Lipschitz curve, in 1965, Calderón [2] first introduced the following commutator

$$[b,T](f) = bT(f) - T(bf),$$

which is called Calderón commutator; furthermore, the boundedness of commutator [b,H] generated by Hilbert transform H and functions $b \in BMO(\mathbb{R}^n)$ on $L^2(\mathbb{R}^n)$ is obtained. In 1976, Coifman-Rochberg-Weiss [6] have proved that the commutator [b,T] generated by $b \in BMO(\mathbb{R}^n)$ and a Calderón-Zygmund operator T is bounded on spaces $L^p(\mathbb{R}^n)$ for $1 . In 1982, Chanillo [3] has proved that the commutator <math>[b,I_\alpha]$ generated by $b \in BMO(\mathbb{R}^n)$ and the I_α is bounded on from Lebesgue spaces $L^p(\mathbb{R}^n)$ into spaces $L^q(\mathbb{R}^n)$, where $\frac{1}{q} = \frac{1}{p} - \frac{\alpha}{n}$ with $1 and <math>0 < \alpha < n$. Recently, the bounded properties of commutator $[b,I_\alpha]$ on different function spaces have been widely studied; for example, in 2022, Jia *et al.* [10] study the boundedness of fractional integrals I_α on special John-Nirenberg-Campanato spaces. In 2021, Tao *et al.* [25] have showed that the commutator $[b,T_\Omega]$ is compact on a ball Banach function space on $X \subset \mathbb{R}^n$ if and only if $b \in CMO(\mathbb{R}^n)$. The other researches on the $[b, I_\alpha]$ can be seen [5, 20, 22, 28] and their references therein.

In this paper, we will mainly study the boundedness of the generalized fractional integral operator I_{ρ} introduced in [19] and its commutator $[b, I_{\rho}]$ on generalized fractional weighted Morrey spaces $\mathcal{L}^{p,\eta,\varphi}_{\omega}(\mathbb{R}^n)$. Under assumption that the ρ and two-weight (ω, ν) satisfy certain conditions, in 2022, Ho [9] shows that potential type operators are bounded on weighted Morrey spaces, on the basis of this, we will show that the generalized fractional integral operator I_{ρ} is bounded on from generalized fractional weighted Morrey spaces $\mathcal{L}^{p,\eta,\varphi}_{\nu p}(\mathbb{R}^n)$ into spaces $\mathcal{L}^{p,\eta,\varphi}_{\omega p}(\mathbb{R}^n)$; furthermore, the boundedness of the commutator $[b, I_{\rho}]$ generated by $b \in BMO(\mathbb{R}^n)$ and I_{ρ} on generalized fractional weighted Morrey spaces is also obtained.

Before stating the main results of this paper, we need to recall some necessary notations. The following definition of Muckenhoupt weight functions A_p is from [7].

Definition 1.1. Let $p \in (1,\infty)$. A non-negative function $\omega \in L^1_{loc}$ is said to be in the Muckenhoupt class A_v if there exists some positive constant C such that, for all balls $B \subset \mathbb{R}^n$,

$$\left(\frac{1}{|B|}\int_{B}\omega(x)\mathrm{d}x\right)^{\frac{1}{p}}\left\{\frac{1}{|B|}\int_{B}[\omega(x)]^{1-p'}\mathrm{d}x\right\}^{\frac{1}{p'}} \leq C.$$
(1.1)

And a weight ω is called an A_1 weight if there exists some positive constant C such that, for all balls $B \subset \mathbb{R}^n$,

$$\frac{1}{|B|} \int_{B} \omega(x) \mathrm{d}x \leq C \inf_{y \in B} \omega(y)$$

Moreover, we define $A_{\infty} := \bigcup_{p=1}^{\infty} A_p$.

Now we recall the definition of space BMO introduced in [11] as follows.