Dynamical system method for solving ill-posed operator equations
Numer. Math. J. Chinese Univ. (English Ser.)(English Ser.) 16 (2007), pp. 54-62
Published online: 2007-02
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{NM-16-54,
author = {X. Luo and S. Yang},
title = {Dynamical system method for solving ill-posed operator equations},
journal = {Numerical Mathematics, a Journal of Chinese Universities},
year = {2007},
volume = {16},
number = {1},
pages = {54--62},
abstract = {
Two dynamical system methods are studied for solving linear
ill-posed problems with both operator and right-hand nonexact. The
methods solve a Cauchy problem for a linear operator equation which
possesses a global solution. The limit of the global solution at
infinity solves the original linear equation. Moreover, we also
present a convergent iterative process for solving the Cauchy
problem.},
issn = {},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/nm/10078.html}
}
TY - JOUR
T1 - Dynamical system method for solving ill-posed operator equations
AU - X. Luo & S. Yang
JO - Numerical Mathematics, a Journal of Chinese Universities
VL - 1
SP - 54
EP - 62
PY - 2007
DA - 2007/02
SN - 16
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/nm/10078.html
KW -
AB -
Two dynamical system methods are studied for solving linear
ill-posed problems with both operator and right-hand nonexact. The
methods solve a Cauchy problem for a linear operator equation which
possesses a global solution. The limit of the global solution at
infinity solves the original linear equation. Moreover, we also
present a convergent iterative process for solving the Cauchy
problem.
X. Luo and S. Yang. (2007). Dynamical system method for solving ill-posed operator equations.
Numerical Mathematics, a Journal of Chinese Universities. 16 (1).
54-62.
doi:
Copy to clipboard