Volume 57, Issue 2
Nonlinear Mixed Lie Triple Derivations by Local Actions on Von Neumann Algebras

Meilian Gao & Xingpeng Zhao

J. Math. Study, 57 (2024), pp. 178-193.

Published online: 2024-06

Export citation
  • Abstract

As a generalization of global mappings, we study a class of non-global mappings in this note. Let $\mathcal{A} ⊆ B(\mathcal{H})$ be a von Neumann algebra without abelian direct summands. We prove that if a map $δ:\mathcal{A}→\mathcal{A}$ satisfies $δ([[A,B]_∗,C]) = [[δ(A),B]_∗,C]+ [[A,δ(B)]_∗,C]+[[A,B]_∗,δ(C)]$ for any $A,B,C ∈ \mathcal{A}$ with $A^∗B^∗C =0,$ then $δ$ is an additive ∗-derivation. As applications, our results are applied to factor von Neumann algebras, standard operator algebras, prime ∗-algebras and so on.

  • AMS Subject Headings

46L57, 47B49

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{JMS-57-178, author = {Gao , Meilian and Zhao , Xingpeng}, title = {Nonlinear Mixed Lie Triple Derivations by Local Actions on Von Neumann Algebras}, journal = {Journal of Mathematical Study}, year = {2024}, volume = {57}, number = {2}, pages = {178--193}, abstract = {

As a generalization of global mappings, we study a class of non-global mappings in this note. Let $\mathcal{A} ⊆ B(\mathcal{H})$ be a von Neumann algebra without abelian direct summands. We prove that if a map $δ:\mathcal{A}→\mathcal{A}$ satisfies $δ([[A,B]_∗,C]) = [[δ(A),B]_∗,C]+ [[A,δ(B)]_∗,C]+[[A,B]_∗,δ(C)]$ for any $A,B,C ∈ \mathcal{A}$ with $A^∗B^∗C =0,$ then $δ$ is an additive ∗-derivation. As applications, our results are applied to factor von Neumann algebras, standard operator algebras, prime ∗-algebras and so on.

}, issn = {2617-8702}, doi = {https://doi.org/10.4208/jms.v57n2.24.04}, url = {http://global-sci.org/intro/article_detail/jms/23168.html} }
TY - JOUR T1 - Nonlinear Mixed Lie Triple Derivations by Local Actions on Von Neumann Algebras AU - Gao , Meilian AU - Zhao , Xingpeng JO - Journal of Mathematical Study VL - 2 SP - 178 EP - 193 PY - 2024 DA - 2024/06 SN - 57 DO - http://doi.org/10.4208/jms.v57n2.24.04 UR - https://global-sci.org/intro/article_detail/jms/23168.html KW - Nonlinear mixed Lie triple derivation, ∗-derivation, von Neumann algebra. AB -

As a generalization of global mappings, we study a class of non-global mappings in this note. Let $\mathcal{A} ⊆ B(\mathcal{H})$ be a von Neumann algebra without abelian direct summands. We prove that if a map $δ:\mathcal{A}→\mathcal{A}$ satisfies $δ([[A,B]_∗,C]) = [[δ(A),B]_∗,C]+ [[A,δ(B)]_∗,C]+[[A,B]_∗,δ(C)]$ for any $A,B,C ∈ \mathcal{A}$ with $A^∗B^∗C =0,$ then $δ$ is an additive ∗-derivation. As applications, our results are applied to factor von Neumann algebras, standard operator algebras, prime ∗-algebras and so on.

Gao , Meilian and Zhao , Xingpeng. (2024). Nonlinear Mixed Lie Triple Derivations by Local Actions on Von Neumann Algebras. Journal of Mathematical Study. 57 (2). 178-193. doi:10.4208/jms.v57n2.24.04
Copy to clipboard
The citation has been copied to your clipboard