TY - JOUR T1 - Nonlinear Mixed Lie Triple Derivations by Local Actions on Von Neumann Algebras AU - Gao , Meilian AU - Zhao , Xingpeng JO - Journal of Mathematical Study VL - 2 SP - 178 EP - 193 PY - 2024 DA - 2024/06 SN - 57 DO - http://doi.org/10.4208/jms.v57n2.24.04 UR - https://global-sci.org/intro/article_detail/jms/23168.html KW - Nonlinear mixed Lie triple derivation, ∗-derivation, von Neumann algebra. AB -
As a generalization of global mappings, we study a class of non-global mappings in this note. Let $\mathcal{A} ⊆ B(\mathcal{H})$ be a von Neumann algebra without abelian direct summands. We prove that if a map $δ:\mathcal{A}→\mathcal{A}$ satisfies $δ([[A,B]_∗,C]) = [[δ(A),B]_∗,C]+ [[A,δ(B)]_∗,C]+[[A,B]_∗,δ(C)]$ for any $A,B,C ∈ \mathcal{A}$ with $A^∗B^∗C =0,$ then $δ$ is an additive ∗-derivation. As applications, our results are applied to factor von Neumann algebras, standard operator algebras, prime ∗-algebras and so on.