- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
This note presents a splitting extrapolation process, which uses successively one-dimensional extrapolation procedure along only one variable with other variables kept fixed. This splitting technique is applied to the numerical cubature of multiple integrals, multidimensional integral equations and the difference method for solving the Poisson equation. For each case, the corresponding error estimates are given. They show the advantage of this method over the isotropic extrapolation along all the variables.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/9680.html} }This note presents a splitting extrapolation process, which uses successively one-dimensional extrapolation procedure along only one variable with other variables kept fixed. This splitting technique is applied to the numerical cubature of multiple integrals, multidimensional integral equations and the difference method for solving the Poisson equation. For each case, the corresponding error estimates are given. They show the advantage of this method over the isotropic extrapolation along all the variables.