- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
The aim of this paper is the study of the convergence of a finite element approximation for a variational inequality related to free boundary problems in non-steady fluid flow through porous media. There have been many results in the stationary case, for example, the steady dam problems, the steady flow well problems, etc. In this paper we shall deal with the axisymmetric non-steady porous flow well problem. It is well know that by means of Torelli's transform this problem, similar to the non-steady rectangular dam problem, can be reduced a variational, inequality, and the existence, uniqueness and regularity of the solution can be obtained ([12, 7]). Now we study the numerical solution of this variational inequality. The main results are as follows:
1. We establish new regularity properties for the solution $W$ of the variation inequality. We prove that $W \in L^\infty(0, T; H^2(D))$, $γ_0W\in L^\infty(0, T; H^2(T_n))$ and $D_1γ_0W\in L^2(0, T; H^1(T_n))$ (see Theorem 2.5). Friedman and Torelli [7] obtained $W\in L^2(0, T; H^2(D))$. Our new regularity properties will be used for error estimation.
2. We prove that the error estimate for the finite element solution of the variational inequality is $$ ( \sum^N_{i=1}\| W^1 - W^1_h \|^2_{H^1(D)}\Delta t)^{1/2} = O(h+\Delta t^{1/2})$$ (see Theorem 3.4). In the stationary case the error estimate is $\|W-W_h\|_{H^1(D)} = O(k)$ ([3,6]).
3. We give a numerical example and compare the result with the corresponding result in the stationary case.
The result of this paper are valid for the non-ready rectangular dam problem with stationary or quasi-stationary initial data (see [7], p.534).
The aim of this paper is the study of the convergence of a finite element approximation for a variational inequality related to free boundary problems in non-steady fluid flow through porous media. There have been many results in the stationary case, for example, the steady dam problems, the steady flow well problems, etc. In this paper we shall deal with the axisymmetric non-steady porous flow well problem. It is well know that by means of Torelli's transform this problem, similar to the non-steady rectangular dam problem, can be reduced a variational, inequality, and the existence, uniqueness and regularity of the solution can be obtained ([12, 7]). Now we study the numerical solution of this variational inequality. The main results are as follows:
1. We establish new regularity properties for the solution $W$ of the variation inequality. We prove that $W \in L^\infty(0, T; H^2(D))$, $γ_0W\in L^\infty(0, T; H^2(T_n))$ and $D_1γ_0W\in L^2(0, T; H^1(T_n))$ (see Theorem 2.5). Friedman and Torelli [7] obtained $W\in L^2(0, T; H^2(D))$. Our new regularity properties will be used for error estimation.
2. We prove that the error estimate for the finite element solution of the variational inequality is $$ ( \sum^N_{i=1}\| W^1 - W^1_h \|^2_{H^1(D)}\Delta t)^{1/2} = O(h+\Delta t^{1/2})$$ (see Theorem 3.4). In the stationary case the error estimate is $\|W-W_h\|_{H^1(D)} = O(k)$ ([3,6]).
3. We give a numerical example and compare the result with the corresponding result in the stationary case.
The result of this paper are valid for the non-ready rectangular dam problem with stationary or quasi-stationary initial data (see [7], p.534).