- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Highly Accurate Numerical Solutions of Elliptic Boundary Value Problems on General Regions
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JCM-4-3,
author = {Guo-Fu Zhou},
title = {Highly Accurate Numerical Solutions of Elliptic Boundary Value Problems on General Regions},
journal = {Journal of Computational Mathematics},
year = {1986},
volume = {4},
number = {1},
pages = {3--10},
abstract = {
We prove that Lin Qun and Lu Tao's splitting extrapolation method and correction method can be effectively applied to raise the accuracy of the numerical solution of elliptic boundary value problems on general regions, i.e., to obtain approximate solutions with fourth- or fifth-order precision in the maximum norm.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/9563.html} }
TY - JOUR
T1 - Highly Accurate Numerical Solutions of Elliptic Boundary Value Problems on General Regions
AU - Guo-Fu Zhou
JO - Journal of Computational Mathematics
VL - 1
SP - 3
EP - 10
PY - 1986
DA - 1986/04
SN - 4
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/9563.html
KW -
AB -
We prove that Lin Qun and Lu Tao's splitting extrapolation method and correction method can be effectively applied to raise the accuracy of the numerical solution of elliptic boundary value problems on general regions, i.e., to obtain approximate solutions with fourth- or fifth-order precision in the maximum norm.
Guo-Fu Zhou. (1986). Highly Accurate Numerical Solutions of Elliptic Boundary Value Problems on General Regions.
Journal of Computational Mathematics. 4 (1).
3-10.
doi:
Copy to clipboard