- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
We present a non-conforming domain decomposition technique for solving elliptic problems with the finite element method. Functions in the finite element space associated with this method may be discontinuous on the boundary of subdomains. The sizes of the finite meshes, the kinds of elements and the kinds of interpolation functions may be different in different subdomains. So, this method is more convenient and more efficient than the conforming domain decomposition method. We prove that the solution obtained by this method has the same convergence rate as by the conforming method, and both the condition number and the order of the capacitance matrix are much lower than those in the conforming case.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/9448.html} }We present a non-conforming domain decomposition technique for solving elliptic problems with the finite element method. Functions in the finite element space associated with this method may be discontinuous on the boundary of subdomains. The sizes of the finite meshes, the kinds of elements and the kinds of interpolation functions may be different in different subdomains. So, this method is more convenient and more efficient than the conforming domain decomposition method. We prove that the solution obtained by this method has the same convergence rate as by the conforming method, and both the condition number and the order of the capacitance matrix are much lower than those in the conforming case.