- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
Optimal interpolation problems of scattered data on a circular domain with two different types of boundary value conditions are studied in this paper. Closed-form optimal solutions, a new type of spline functions defined by partial differential operators, are obtained. This type of new splines is a generalization of the well-known $L_g$-splines and thin-plate splines. The standard reproducing kernel structure of the optimal solutions is demonstrated. The new idea and technique developed in this paper are finally generalized to solve the same interpolation problems involving a more general class of partial differential operators on a general region.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/9366.html} }Optimal interpolation problems of scattered data on a circular domain with two different types of boundary value conditions are studied in this paper. Closed-form optimal solutions, a new type of spline functions defined by partial differential operators, are obtained. This type of new splines is a generalization of the well-known $L_g$-splines and thin-plate splines. The standard reproducing kernel structure of the optimal solutions is demonstrated. The new idea and technique developed in this paper are finally generalized to solve the same interpolation problems involving a more general class of partial differential operators on a general region.